Как сделать синусоиду от ups простая схема
Перейти к содержимому

Как сделать синусоиду от ups простая схема

  • автор:

Как получить чистую синусоиду из модифицированной. Часть 1

Еще не стерлись из памяти события «лихих» 90-х. Помнится МММ, разгул криминала, веерные отключения электроэнергии. На Украине, например, во второй половине 90-х дело доходило до того, что свет в жилых районах выключали на 2 часа через каждые 2 часа. Помнится, наиболее коварным был зимний период темноты между пятью и семью часами вечера. Как раз, когда народ возвращался с работы. Выгружаешься на остановке, автобус уезжает, и ты остаешься в полной темноте. Пытаешься привыкнуть, трешь глаза, давишь на глазные яблоки. Все безрезультатно, вокруг полная темнота. Делать нечего, осторожно ступаешь во мраке, пытаясь нащупать заветный забор, который должен вывести к родной калитке и потихоньку, на ощупь, домой.

Сравнительное тестирование аккумуляторов EVE Energy и Samsung типоразмера 18650

Однако в этих мытарствах были и положительные элементы. Например, резко возрос спрос на разные бензо- и дизель-генераторы, а также на электронные преобразователи и бесперебойные источники тока. Последнее обстоятельство позволило людям творческим применить свои профессиональные навыки и даже немного улучшить на этом поприще свое финансовое положение. А там, глядишь, появились различные фирмочки, выпускающие эти самые преобразователи и бесперебойники. Какой-никакой подъем в экономике образовался, дополнительные рабочие места и т. п. Собственно, и Ваш покорный слуга, примерно в те времена, из электроники слабосильной подался в электронику силовую.

Нельзя сказать, что тогда с этой самой электроникой сильно мудрили. Делали, чтобы было просто, надежно и дешево. В принципе, для того чтобы питать одну-две лампочки, больше ничего и не требовалось. Однако по мере развития процесса конкуренция ужесточалась. Народу уже стало из чего выбирать. Особо привередливые начали интересоваться формой напряжения на выходе преобразователей и бесперебойников. На что им очень обтекаемо отвечали, что форма там практически синусоидальная, но лишь слегка модифицированная. Более честные говорили, что там присутствует синусоида, но только квадратная. А уж совсем честные говорили напрямую, что их преобразователи и бесперебойники формируют на выходе прямоугольное напряжение с паузой. Но параметры этого напряжения (амплитудное и действующее значение, а также частота) практически соответствуют аналогичным параметрам однофазного переменного напряжения бытовой электросети. В принципе, такое напряжение вполне подходило для основных бытовых электропотребителей, таких телевизоры, компьютеры, а также накальные и люминесцентные лампы. Те же электропотребители, которые требовали чисто синусоидального напряжения (асинхронные двигатели, например), были в меньшинстве и погоды особой не делали.

Однако такое положение не могло длиться вечно. Количество отключений сокращалось и в какой-то момент они практически вообще прекратились. Однако параллельно на рынке бытовых товаров стали появляться отопительные котлы, оборудованные циркуляционными насосами, приводными задвижками и электронным управлением. Такие котлы требовали высококачественного бесперебойного электропитания. В противном случае, при отключении электричества работа системы отопления полностью нарушалась.

И вот тут возникала некая дилемма. Многие владельцы отопительного чуда уже обладали бесперебойными источниками, мощности которых с лихвой хватало для питания котла. Однако, вот беда, циркуляционные насосы ни в какую не хотели крутиться от «прямоугольной синусоиды». Для чудо-котла надо было приобретать новый чудо-бесперебойный источник, формирующий на выходе чистейшую синусоиду. А куда же теперь девать старый, к которому уже душой прикипели. Нехорошо как-то все это!

Но положение не безвыходное и старый друг нам еще послужит! Для питания асинхронного двигателя от прямоугольного напряжения можно использовать фильтр Отто. Есть множество положительных примеров практического воплощения такого подхода. Однако такой вариант не самый простой и, уж точно, не универсальный. После продолжительной и утомительной настройки фильтр можно будет использовать только с конкретным двигателем. Хотелось бы чего-то более универсального. Таким более универсальным решением будет использование в качестве фильтра феррорезонансного или подобного ему стабилизатора. При этом феррорезонансный стабилизатор, включенный после бесперебойного источника, будет не только исправлять форму его выходного напряжения в периоды отсутствия сети (работа от аккумулятора), но и будет стабилизировать напряжение сети в моменты его присутствия.

Ниже приводится описание и принципиальная электрическая схема феррорезонансного стабилизатора мощностью 1000 Вт. В статье приведены формулы и методика расчета, которая позволит вам пересчитать стабилизатор на другую мощность, если это потребуется.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы имеют ряд достоинств, таких как высокая надежность и быстродействие, широкий диапазон входных напряжений, хорошая стабильность выходного напряжения, способность к исправлению формы сильно искаженного входного напряжения. Однако, не смотря на все свои достоинства, эти стабилизаторы имеют и некоторые недостатки, к которым можно отнести относительно низкую удельную мощность и высокий уровень шумов, создаваемых при работе.

Не так давно, в 60-80-х годах прошлого века, феррорезонансные стабилизаторы широко использовались в быту для питания ламповых телевизоров. И старшее поколение читателей, скорей всего, до сих пор помнит тот надрывный гул, которым сопровождалась работа этих аппаратов, которые различались формой и расцветкой, но имели вес 10-15 кг при мощности 250-350 Вт.

Основным источником шумов в феррорезонансном стабилизаторе является насыщающийся дроссель. В работе сердечник этого дросселя постоянно насыщается, что приводит к изменению его линейных размеров. Это явление называется магнитострикционным эффектом. О «шумности» этого эффекта говорит хотя бы тот факт, что он широко используется в гидроакустике для генерации мощных акустических волн. Следовательно, если мы хотим построить тихий стабилизатор, то в первую очередь должны избавиться от насыщающегося дросселя. Однако нельзя просто так выбрасывать неугодные комплектующие из стабилизатора. В этом случае мы рискуем потерять его функциональность. Чтобы этого не произошло, сначала нужно найти достойную замену. И на нашу удачу такая достоянная замена имеется. Еще в 70-х годах прошлого столетия была доказана возможность замены насыщающегося дросселя последовательной цепочкой, состоящей из линейного дросселя и двух встречно-параллельных тиристоров [1]. Такая цепь ведет себя аналогично насыщающемуся дросселю, но в отличие от него имеет меньшие размеры и массу, может оперативно регулироваться за счет управления тиристорами, обеспечивает меньшие потери и, самое главное, гораздо меньше шумит. В технической литературе такая цепочка зачастую называется резонансным тиристорным регулятором (РТР) [2]. При необходимости, два встречно-параллельных тиристора РТР можно с успехом заменить одним симистором.

Работа стабилизатора

Функциональная схема стабилизатора с РТР [2] изображена на Рисунке 1.

Рисунок 1. Функциональная схема стабилизатора с РТР.

Стабилизатор с РТР имеет практически тот же принцип действия, что и феррорезонансный стабилизатор. Выходное напряжение UН поддерживается на требуемом уровне (220 В). Когда напряжение питающей сети UС имеет минимальное значение, симистор VS1 заперт. При этом напряжение UН поднимается до требуемого уровня за счет резонанса в колебательном контуре L1C1. Если же напряжение питающей сети UС имеет максимально допустимое значение, то симистор VS1 постоянно открыт. При этом дроссели L1 и L2 образуют делитель переменного напряжения, уменьшающий сетевое напряжение до требуемого уровня. В феррорезонансном стабилизаторе насыщающийся дроссель также максимально используется при максимальном входном напряжении, и минимально при минимальном. Дроссель L3 совместно с конденсатором С1 образует фильтр третьей гармоники, улучшающий форму выходного напряжения стабилизатора.

Рисунок 2. Осциллограммы основных напряжений и токов стабилизатора с РТР.

Рассмотрим подробнее работу стабилизатора с РТР. На Рисунке 2 изображены осциллограммы основных напряжений и токов стабилизатора с РТР. Выходное напряжение стабилизатора UН выпрямляется при помощи выпрямителя В2. Выпрямленное напряжение UВ2 поступает на фильтр Ф, который выделяет из него среднее, действующее или амплитудное значение, в зависимости от того, какое значение выходного напряжения UН требуется стабилизировать. Далее напряжение с выхода фильтра поступает на сумматор, где сравнивается с опорным напряжением UОП. С выхода сумматора напряжение ошибки поступает на регулятор Рег, который формирует управляющий сигнал, призванный компенсировать отклонение выходного напряжения стабилизатора. Выходное напряжение регулятора UПОР поступает на вход порогового устройства ПУ и определяет его порог срабатывания. На другой вход порогового устройства подается синхронизирующее напряжение UВ1, привязанное к моментам перехода через ноль выходного напряжения UН стабилизатора. На выходе порогового устройства ПУ формируются импульсы управления UУПР, которые усиливаются усилителем мощности УМ и в требуемой полярности поступают на управляющий электрод симистора VS1. Синхронизирующее напряжение создается при помощи интегратора Инт и выпрямителя В1. Благодаря интегратору, импульсы выпрямленного напряжения UВ1 отстают от импульсов UВ2 на 5 мс (фазовый сдвиг –90°).

Импульсы управления UУПР формируются на нарастающем фронте UВ1 между нулевым и амплитудным значением этого напряжения. При увеличении порогового напряжения UПОР импульсы управления максимально сдвигаются к амплитудному значению UВ1 и, соответственно, к нулевому значению UВ2. В этом случае симистор открывается в районе нулевого значения UН и через линейный дроссель L2 протекает незначительный ток IL2, который не оказывает существенного влияния на выходное напряжение стабилизатора. При уменьшении порогового напряжения Uпор импульс управления сдвигается в сторону амплитудного значения UН и через линейный дроссель L2 начинает протекать существенный ток, который шунтирует выход стабилизатора и уменьшает величину его выходного напряжения.

Если выходное напряжение стабилизатора меньше требуемого, то регулятор Рег увеличивает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, уменьшается, и выходное напряжение стабилизатора возрастает за счет резонанса в колебательном контуре L1C1. Если выходное напряжение больше требуемого, то регулятор Рег уменьшает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, увеличивается и выходное напряжение стабилизатора уменьшается.

Расчет силовой схемы стабилизатора

Рассмотрим практическую методику расчета стабилизатора мощностью 1000 ВА. Такой стабилизатор может использоваться как независимое устройство или совместно с устаревшими источниками бесперебойного питания для получения синусоидальной формы напряжения.

Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью SН = 1000 ВА изображена на Рисунке 3. Стабилизатор рассчитан на работу от сети переменного тока 220 В 50 Гц c нагрузкой, имеющей коэффициент мощности cos φН ≥ 0.7, и формирует выходное напряжение UН = 220 В ±1% во всем диапазоне нагрузок при изменении входного напряжения от 150 до 260 В.

Рисунок 3. Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью 1000 ВА.

Первым делом необходимо определить емкость резонансного конденсатора. Реактивную мощность резонансного конденсатора для стабилизатора без фильтра третьей гармоники можно найти по формуле:

– угловая частота сетевого напряжения, рад/с.

Зная реактивную мощность резонансного конденсатора, найдем его емкость:

Найдем индуктивность линейного дросселя L1:

Найдем индуктивность линейного дросселя L2:

Найдем индуктивность линейного дросселя L3:

Так как в стабилизаторе для улучшения формы выходного напряжения установлен фильтр третьей гармоники, емкость резонансного конденсатора можно уменьшить:

В качестве C1 можно использовать компенсирующие конденсаторы типа К78-99 или аналогичные, предназначенные для коррекции коэффициента мощности электромагнитных дросселей газоразрядных ламп. Например, можно использовать два включенных параллельно конденсатора К78-99 емкостью 50 мкФ, рассчитанных на напряжение 250 В переменного тока. Для этой же цели можно использовать конденсатор типа МБГВ 100 мкФ на напряжение 1000 В.

Переделать модифицированную синусоиду в правильную

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Поделиться

Последние посетители 0 пользователей онлайн

  • Ни одного зарегистрированного пользователя не просматривает данную страницу

Сообщения

O5-14

Все надписи латиницей, тк делалось в версии с поддержкой плагинов, но не русских надписей) 1% резисторы 1206, также предусмотрен вариант резисторной сборки 10к из них. BatTester_final1.0.lay6

Добавлю сюда, наверняка кому-нибудь пригодится. В своём ролике Майоров заметил, что у SG3525 от ST нет заявленного в даташите защёлкивания-ограничения длительности по входу Shut Down (вывод 10) импульса при коротких импульсах с датчиков тока. В даташите от ST, да и во всех остальных, видимо срисовавших это у Моторолы, которая нарисовала эту картинку ещё в лохматом 1996 году, нарисовано: Но вот этого входа установки (отмечен на рисунке синей стрелкой) у этого триггера нет. Проверено на китайском модуле с SG3525, на которой маркировка ST. Не знаю, насколько она «ST», но других на рынке сейчас всё равно нет. На вход 10 подавались импульсы сброса с генератора, имитирующие импульсы с датчика тока. Никакого запоминания (выключения) до конца импульса нет. Выключение происходит только на время действия сигнала на входе Shut Down (вывод 10). Верхний красный луч — импульсы «Shut Down», нижний жёлтый — сигнал на выходе 11 (или 14, там то же самое) управления ключами. Для наглядности показаны две картинки с разной длительностью импульсов выключения. На выходе просто появляются «врезки» той же длительности. Если длительность импульсов выключения увеличить, за время одного импульса успевает разрядиться конденсатор Soft-Start, и по сигналу от Error Amp триггер устанавливается, выходной импульс выключается до следующего. Если ещё увеличить длительность — выходы выключаются совсем. Тут всё как написано в даташите. Ещё больше убедился во мнении, что вход Shut Down абсолютно не годится для ограничения тока. Примечание. Китайцы видимо пытались бороться с этим эффектом, в модуле на вход 10 напаян конденсатор 1 мкФ. Задержка срабатывания конечно получилась сумасшедшая, но выключение «чистое». «Инженеры», блин. Чтобы подавать импульсы, я его снял.

IMXO

как-то так естественно схема не отменяет наличие защитной обвязки мосфетов (затворные резисторы, подтяжки, трансилы, буферные емкости и тд)

Описывал работу н-канала, а вставил название п-канала )) Я и не о предложенной схеме, а о хар-ках транзистора.

as242

Все равно побаиваюсь с фьюзом RST баловаться. А так ставишь любые фьюзы он больше не шьется. Засунул в доктора и готов как новый. Так что советую такой собрать. Штук 10 мег 8 и 328 востановил без проблем

IMXO

не сможет. он закрываться не будет.

Вы что Серьёзно?! Вчера Пьятница Вечер, а Сегодня Субботница наверное? Покажите мне такой автомат на 220 Вольт.

Как получить чистую синусоиду от ИБП для насоса котла отопления.

В связи с периодическими отключениями электричества была поставлена задача смастерить что нибудь простое (не дорогое) для прокачки воды в системе отопления. Результатом своей работы остался доволен на 100%.
Схема фильтра простейшая, все комплектующие нашлись бесплатно.

Прошу делиться своими соображениями.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 07.11.2014 Санкт-Петербург Сообщений: 434
10.03.2015 в 22:09

А теперь подключите через этот ваш фильтр ту нагрузку, которая вам нужна. И посмотрите на форму синусоиды.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 04.06.2011 Полтава Сообщений: 254
10.03.2015 в 22:13

g8o8r8 написал :
А теперь подключите через этот ваш фильтр ту нагрузку, которая вам нужна. И посмотрите на форму синусоиды.

Я подключал насос в системе отопления, эта нагрузка меня и интересует.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 07.11.2014 Санкт-Петербург Сообщений: 434
10.03.2015 в 22:25

В сети легко найти расчет такого фильтра. Нашли? И увидели железную зависимость от нагрузки. Лампочка и насос — не сравнимы.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 04.06.2011 Полтава Сообщений: 254
10.03.2015 в 22:31

g8o8r8 написал :
В сети легко найти расчет такого фильтра. Нашли? И увидели железную зависимость от нагрузки. Лампочка и насос — не сравнимы.

Совершенно с этим согласен , но через фильтр работал насос + маленький двигатель, лампочка отдельно.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 29.10.2005 Санкт-Петербург Сообщений: 3397
10.03.2015 в 23:11

да дроссель должен быть термоядерный если насос мощный. Но у мощных ибп как правило и форма близка к синусу.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 04.06.2011 Полтава Сообщений: 254
11.03.2015 в 09:32

Solovushka написал :
да дроссель должен быть термоядерный если насос мощный. Но у мощных ибп как правило и форма близка к синусу.

Ну особо мощных насосов в системме отопления дома не ставят а дроселя есть от ламп 250Вт-1КВт.
А насчет зависимости формы выходного сигнала от мощности ИБП, это врятли.
Испытания продолжаются, времени маловато.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 15.12.2008 Богородицк Сообщений: 62
21.12.2016 в 18:46

Этот фильтр (который я так понимаю режет все высшие гармоники от «модифицированной синусоиды», а по сути от прямоугольных импульсов) сильно снижает КПД устройства. То есть, если без него ваш насос проработал бы, к примеру 8 часов от аккумуляторов, то с фильтром это будет часов 5.

  • Просмотр профиля
  • Сообщения пользователя
  • Личное сообщение

Регистрация: 20.04.2009 Москва Сообщений: 3488
21.12.2016 в 21:34

satbugger написал:
Этот фильтр (который я так понимаю режет все высшие гармоники от «модифицированной синусоиды», а по сути от прямоугольных импульсов) сильно снижает КПД устройства. То есть, если без него ваш насос проработал бы, к примеру 8 часов от аккумуляторов, то с фильтром это будет часов 5.

satbugger , Фильтр РЕАКТИВНЫЙ в нём нет ни одного активного элемента рассеивающего мощность

poltavaagro вам повезло
такие включения очень опасны тем что нагрузка индуктивная (двигатель насоса) и
без расчёта такого фильтра можно попасть в резонанс при котором напряжение возрастёт в несколько раз и спалит всё нафиг.

Чистая синусоида vs ее ступенчатая аппроксимация

Чистая синусоида vs ее ступенчатая аппроксимация

Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.

Какой бывает синусоида

В характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.

Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.

Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well

Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.

Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.

Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт

Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.

Нагревательное электрооборудование

Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.

обычной грелке будет все равно, от чего питаться

Люминесцентные, светодиодные лампы и светильники

В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.

Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.

По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).

Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

в усилителях мощности часто ставят обычные трансформаторы

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

Устройства, имеющие электродвигатели

Какие устройства с двигателями потенциально могут подключаться к системам питания с квазисинусом? В первую очередь электроинструменти вспомогательное электрооборудование — дрели, перфораторы, бетоносмесители, болгарки, шлифмашинки, погружные насосы и прочее подобное. В таких устройствах применяются коллекторные или асинхронные двигатели. В некоторых электроинструментах имеется встроенный регулятор мощности. Вряд ли данное оборудование будет запитываться от источника бесперебойного питания. В большинстве случаев для его автономного питания будет использован бензогенератор или мощный инвертор 12/220 В, например, в гараже, в котором нет электросети.

Сравним работу электроинструмента от розетки и от инверторного бензогенератора с квазисинусом. Параметры снимались при работе оборудования на холостом ходу, кроме насоса. Дополнительно проверялась работа под нагрузкой с целью оценить изменение мощности на валу.

По результатам данных тестов можно отметить неудовлетворительную работу электроинструмента и оборудования, имеющего в составе регулятор мощности. Это связано с тем, что большинство регуляторов мощности для переменного напряжения построены на симисторах или тиристорах, такие регуляторы часто называют диммерами. Так вот, диммеры могут правильно работать исключительно с синусоидальным напряжением. Так получилось не специально, просто, когда их придумывали, в исходных данных технического задания было написано, что напряжение будет синусоидальным.

В работе оборудования, не имеющего регулятора мощности, каких-либо значимых отрицательных изменений не отмечалось. При работе асинхронных двигателей от квазисинуса прослушивался характерный «звонкий» шум сердечника и обмоток частотой выше 50 Гц. Перегрева также не наблюдалось. При работе коллекторных двигателей из-за их шума оценить изменение звука не представлялось возможным.

Системы отопления

Часто возникает вопрос о возможности использования недорогих компьютерных источников бесперебойного питания (ИБП) с квазисинусом для резервного питания электрического оборудования в системах отопления — циркуляционных насосов, энергозависимых газовых котлов. В газовом котле с закрытой камерой сгорания кроме циркуляционного насоса установлен вентилятор принудительной тяги или, как его еще называют, вентилятор отвода продуктов горения. Проведем несколько тестов в этом направлении.

Как выяснилось, квазисинус не оказывает заметного негативного влияния на работу циркуляционного насоса. По крайней мере, непродолжительная работа от ИБП на время отключения основного электропитания уж точно ему не навредит. Единственный минус — это неприятные звуки, которые издает насос при питании квазисинусом.

Хуже дело обстоит с вентилятором принудительной тяги. При питании квазисинусом от ИБП вентилятор заметно снижал обороты и потребляемую мощность. А ведь в большинстве настенных газовых котлов установлены именно такие вентиляторы — асинхронные с одной обмоткой. Очевидно, что снижение производительности данного вентилятора негативно повлияет на процесс отвода продуктов горения, а значит на работу котла в целом.

Кроме того, в некоторых котлах применяется автоматическая регулировка оборотов данного вентилятора с целью оптимизации производительности котла. Так вот, регулировка эта также выполнена по принципу диммирования. А диммеры «плохо относятся» к квазисинусу, значит, поведение такого вентилятора может быть непредсказуемым.

Таким образом, если котел с закрытой камерой и имеет вентилятор принудительной тяги, то питание его квазисинусом настоятельно не рекомендуется.

В остальных случаях все не так страшно, но, не зная конструкции того или иного котла лучше не рисковать и не использовать ИБП с квазисинусом для его питания. Газовый котел — это серьезное оборудование, которое изначально рассчитано на питание синусоидальным напряжением.

Устройства с импульсными источниками питания

Как уже было сказано, недорогие ИБПв большинстве случаев выдают ступенчатую аппроксимацию синусоиды. И для временного резервного питания компьютеров это считается нормой. Посмотрим, как изменяются входные параметры импульсного блока питания компьютера при переходе на питание «аппроксимацией синусоиды». Блоки питания без корректора коэффициента мощности. Тестирование проводилось в режиме бездействия системы и при запуске стресс-теста, чтобы увеличить потребляемую мощность. Мониторы также не были забыты. Результаты ниже.

Что интересно, у некоторых устройств при питании квазисинусом электрические параметры даже улучшались. Например, в системном блоке № 1 потребляемая мощность не изменялась, но значительно увеличился коэффициент мощности, из-за чего уменьшился средний потребляемый ток. У системного блока с БП от Zalman данный эффект тоже имеется, но не так выражен.

Однозначно можно сделать вывод о совместимости блоков питания системников с квазисинусом.

Однако есть одно жирное «НО». В последнее время все большее количество моделей БП оснащаются корректором коэффициента мощности (PFC). Данные устройства призваны поддерживать коэффициент мощности как можно ближе к единице при питании от сети с синусоидальным напряжением, дабы не перегружать сеть большими пиковыми токами. Поэтому по определению БП с PFC корректно работают только с синусоидальным напряжением, но это не значит, что, если ИБП выдает аппроксимацию синуса, то любой БП с PFC работать с ним не сможет. На самом деле схемотехнические решения PFC могут быть разные и некоторые модели могут быть не восприимчивы к квазисинусу — это дело случая. Необходимо отметить, что квазисинус далеко не основная вероятная причина несовместимости ИБП и PFC. Но это уже совсем другая история.

А что с мониторами? У одного из тестируемых при питании квазисинусом энергетические параметры ухудшились, но незначительно. Блок питания ноутбука каких-либо проблем не показал. Так что данные устройства можно запитывать квазисинусом.

Подводя итоги всей публикации, можно сказать, что использование напряжения квазисинусоидальной формы для питания различного электрооборудования — это лотерея, даже для блоков питания компьютеров. Ведь любое оборудование на напряжение 220–230 В переменного тока разрабатывалось с условием, что форма этого напряжения будет синусоидальной. Всякие «аппроксимации» — это всего лишь допущения, которые возможны с той или иной степенью вероятности. Поэтому, если строится универсальная система резервного электропитания, форма и параметры ее напряжения должны быть идентичны параметрам промышленной электросети. В общем, квазисинус — это плохо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *