Как понять в какую сторону течет вода в трубе
Перейти к содержимому

Как понять в какую сторону течет вода в трубе

  • автор:

В какую сторону течёт вода?

Пятничная статья про столкновение задачи из собеседования с реальным миром.

Есть довольна известная задача — перед вами находится металлическая труба с текущей внутри водой. Как определить, в какую сторону она течёт? Её всё ещё могут задать вам на собеседованиях.

По многим задачам с неточной формулировкой уже проходились, давайте разберёмся, что же не так с этой трубой.

Ожидаемое решение — нагреть трубу и посмотреть, в какую сторону будет распространяться тепло. Но тут есть много дополнительных нюансов. Как правило подразумевается, что греть будут газовой горелкой. Встречалось даже ограничение, что у вас может быть любой предмет ценой до ста рублей, что делает задачу практически нерешаемой таким способом, но об этом позже.

Во-первых, надо быть уверенным, что температура воды достаточно низка, чтобы её можно было трогать. Ну, точнее, чтобы можно было понять разницу между «очень горячо» и «очень-очень горячо». Точно сказать сложно, но вряд ли это выше 50 градусов Цельсия.

Во-вторых, надо быть уверенным, что вода течёт со скоростью значительно большей скорости распространения тепла в воде. Например, при скорости потока 1мм/с вы вряд ли поймёте, куда вода движется и движется ли вообще.

В-третьих, надо быть уверенным, что вода не течёт со слишком большой скоростью. Иначе она просто не успеет достаточно прогреться.

Температурная чувствительность человека к разницам температур составляет примерно один градус. Исходя из теплоёмкости воды ~4,2 кДж/кг получим, что на грамм протекающей воды мы должны передать в районе 4,2 Джоуля чтобы иметь возможность ощутить разницу температур.

Предположим, что подогревая трубу какой-то горелкой мы передаём трубе примерно половину теплоты сгораемого топлива. Это достаточно щедрое предположение, например хорошие газовые котлы имеют КПД в районе 95%.

Скорость потока в обычном холодном водоснабжении составляет примерно 1м/с. Для обычной трубы 1/2″, скажем в ванной, это даст расход примерно 200 г/с. Будем опираться на эти цифры чтобы иметь представление о том, какого размера должна быть труба, чтобы при привычной скорости потока мы могли определить его направление.

Зайдём с козырей. Предположим, что для решения задачи у вас есть хорошая сварочная горелка, ацетилен и кислород. Расход горелки примерно килограмм ацетилена в час, теплота сгорания примерно 50МДж/кг. Соответственно, в секунду получим примерно 13888 Дж, с учётом низкого КПД трубе передастся примерно 7000 из них. В принципе, можно прогреть на градус трубу с проходом 1.7 кг воды в секунду.

Ну… Решение вроде работает. Но давайте признаем, что большинство программистов никогда не держали в руках сварочную аппаратуру. И глядя на архитектуру некоторых приложений — это к лучшему. Пусть в качестве нагревательного прибора используется обычная газовая горелка со сменным баллоном, вроде той что используется для розжига кальянного угля. Расход газа составляет примерно 100 г/час. Для простоты расчёта возьмём теплоту сгорания пропана такой же, то есть 50МДж. В секунду мы сможем получить 700 Дж. Этого хватит для нагрева 170 грамм воды.

Выглядит уже не так перспективно. Если на дальний конец этой таинственной трубы надет шланг и моя бабушка поливает из него помидоры, то есть поток жидкости по трубе практически не ограничен, то понять направления потока мы уже не сможем. Бабуле придётся слегка зажимать шланг пальцем чтобы задача стала решаемой.

Вообще в условии подразумевалось, что смышлёный соискатель возьмёт зажигалку и нагреет трубу. Я нигде не смог найти нормы расхода газа для зажигалок. Вероятно, проводить подобные изменения никому в голову не пришло.

Возьмём данные по газовым паяльникам. Определённо, это более мощный прибор чем зажигалка, но примем эти цифры для расчёта. Газовый паяльник потребляет примерно 20 мл/час, то есть примерно 10 г/час. Значит с его помощью мы сможем нагревать на один градус примерно 17 грамм воды в секунду.

17 г/с это очень немного. Для такого расхода к трубе должен быть подключен весьма скромный потребитель, например автомат для газировки. Причём это не тот автомат как в торговом центре — пять секунд и поллитровый стакан готов. Это автомат, который наливает стакан очень медленно, с приличествующей случаю торжественностью.

Суммируя всё вышесказанное, задачу нужно было бы поставить следующим образом:

Вы находитесь в бесконечном поле. Перед вами металлическая труба толщиной не более стандартной водопроводнной. В ней течёт вода, температуры не выше 50 градусов Цельсия, со скоростью не более 1 м/с и не менее 1мм/с. Начала и конца этой трубы вы достигнуть не сможете. Какой предмет вам потребуется для определения направления движения жидкости?

Звучит довольно глупо. И это мы ещё опустили совсем уж дурацкие уточнения вроде того, что труба не сделана из галлия, температура вокруг не -190, атмосфера не состоит из гремучего газа или вас не реинкарнировало в бурундука.

Для решения задачи в хоть сколько-нибудь приближенных к реальным условиях вам требуется весьма серьёзное оборудование. С которым работать вы, кстати, скорее всего не умеете.

Как и во всех логических задачах, условности тут просто неисчислимы. Даже если взять задачу с волком козой и капустой — как такое вообще возможно? Вы голый, стоите на берегу реки, перед вами всё это добро и вам надо переправиться? Ах да, берега реки сделаны из адамантия, чтобы вы капусту закопать не догадались. В такой ситуации любой нормальный человек в первую очередь задумается, не позвать ли санитара.

Мы уже прикинули выше, для того, что нормальный человек представляет себе при фразе «труба с водой», тепловое решение практически неприменимо. По крайней мере если у вас нет случайно с собой горелки и двух баллонов.

Тем не менее, можно придумать несколько других решений. Тоже, не без ограничений, но более широко применимых.

Тепловой, но «обратный» вариант — обдуть трубу углекислотой из огнетушителя и посмотреть, как будет стаивать иней.

Можно положить на трубу камертон и слушать звук левее и правее. В направлении движения жидкости звук разнесётся дальше. Тут, впрочем, нужны достаточно большие скорости. Для совсем уж больших скоростей можно будет даже услышать эффект Доплера.

Особо мощные кандидаты могут просто пнуть трубу и посмотреть, в каком направлении волна быстрее затухнет.

При помощи зажима с регулировкой усилия можно сжать трубу, чтобы уменьшить проход, и затем замерить усилие необходимое для её сжатия с обеих сторон от сужения.

В общем решения есть. Но весьма причудливые для столь простой задачи. И все они сложнее очевидного — дойти до конца трубы. В реальном мире бесконечные трубы не встречаются. Более того, там где это важно, направление движение жидкости указывается при монтаже. И даже есть клапаны, препятствующие обратному движению.

К сожалению, такие задачи ничего о кандидате не скажут. Ну кроме того, что он любит на досуге решать головоломки.

Как узнать, в каком направлении течет вода по трубе?

Самый надежный способ — это просверлить крошечное отверстие в трубопроводе (ПВХ?) С верхней стороны (в сторону от направления силы тяжести) и каким-то образом закрепите пакет поверх отверстия. Мешок должен надуваться, когда есть поток. Вы также можете просто вставить в отверстие манометр. Изменение давления указывало бы на расход.

В каком направлении обычно текут реки?

Реки текут в одном направлении по всему миру, и это направление спуск. В центральной и восточной частях Соединенных Штатов реки редко текут на север, потому что склоны суши направлены на юг и восток.

В каком направлении течет ручей?

Контурные линии изгибаются и указывают на юго-запад выше по течению. Следовательно, ручей течет в обратном направлении, к северо-востоку. Северо-восточная часть имеет самую низкую отметку, и вода всегда течет вниз.

Как я узнаю, есть ли вода в моей медной трубе?

  1. Вы можете почувствовать резкое изменение температуры на внешней стороне трубы. .
  2. Можно просто подумать об измерении температуры на поверхности медной трубы на расстоянии от водонагревателя.

Какой датчик может обнаруживать воду?

Датчики уровня гидростатического давления погружные датчики, используемые для измерения уровня жидкостей (в том числе агрессивных) в глубоких резервуарах или воды в резервуарах.

Какие две единственные реки в мире текут на север?

Река Джонс и река Нил это единственные две реки в мире, которые текут на север ». В этой редакционной статье он объясняет, что есть сотни рек, текущих на север, и, фактически, река Сент-Джонс также течет на юг.

Почему топологические линии не должны пересекаться?

Контурные линии никогда не пересекаются на топографической карте потому что каждая линия представляет один и тот же уровень возвышения земли.

Как определить направление воды в трубе: В какую сторону течёт вода?

Как промыть трубы и почистить водосток: чистка труб канализации и водопровода в домашних условиях

Засоры в канализации

Признаки. На возникновение засора в канализационной трубе указывают:

  • появление неприятного запаха из слива раковины. Причиной служат жировые и белковые отложения на стенках сливной трубы, которые являются благоприятной средой для развития микроорганизмов;
  • затрудненный отток воды при использовании сантехнического прибора или заметный подъем уровня жидкости в чаше унитаза при нажатии слива;
  • снижение напора. Такая ситуация нередко возникает при высокой жесткости воды или образовании внутри водопроводной трубы большого слоя ржавчины. Иногда водопровод засорен до такой степени, что напор полностью отсутствует.

Причины появления. Перед тем, как очистить слив, важно выявить причину возникновения засора. Чаще проблемы с канализационной системой вызваны:

  • попаданием в трубу крупного предмета. Он может полностью или частично перекрыть отток воды;
  • зарастанием просвета. Это происходит из-за накопления отходов и продуктов жизнедеятельности на стенках труб;
  • возникновением жировой пробки. При неправильной эксплуатации частицы жира, попадающие в трубу, скапливаются на стенках и со временем могут полностью перекрыть просвет. Жировые пробки особенно опасны для металлических систем;
  • образованием мыльной пробки в ванной комнате. Со временем мыло смешивается с другими частицами и твердеет;
  • попаданием волос. Устранить такой засор можно механическим способом или с помощью химических веществ;
  • ошибками в проектировании и монтаже. В этом случае избежать проблем можно, заново собрав систему;
  • высокой жесткостью воды и солевыми отложениями, которым особенно подвержены металлические трубы.

Чем опасен засор в канализации. При создании любого строительного объекта особое внимание уделяют проектированию канализационной системы.

Она обеспечивает нормальное использование сантехнических приборов и удовлетворение естественных потребностей жильцов. Исправное состояние канализации – залог чистоты в доме и на приусадебном участке, именно поэтому проблему засоров нужно решать своевременно. Эксплуатация канализационной системы часто сопровождается различными проблемами, которые затрудняют использование сантехнических приборов и усложняют решение бытовых задач. Засоры могут возникнуть на различных уровнях сети, в том числе в сливах приборов в ванной комнате и на кухне. Большинство из возникших проблем можно решить самостоятельно, используя специальное оборудование.

Профилактика засоров в канализации. Любую проблему проще предотвратить, чем устранить. Чтобы избежать возникновения засоров в канализационной трубе, воспользуйтесь следующими советами.

  • Раз в несколько дней открывайте кран с горячей водой на непродолжительное время, чтобы избежать появления жировых отложений на стенках.
  • Используйте специальные сеточки из металла или пластмассы, которые устанавливают в слив раковины. Особенно важно использовать их на кухне, где остатки пищи часто становятся причиной засора.
  • Регулярно разбирайте трубы слива и прочищайте их от образовавшихся отложений.
  • Не бросайте в канализацию отходы, для которых предусмотрен другой способ утилизации. Постепенно откладываясь на стенках, они могут полностью перекрыть слив воды.

Эффект Кориолиса • Джеймс Трефил, энциклопедия «Двести законов мироздания»

получил вопросы по почте.
Sun Dec 20 23:17:47 2009
From: a_b
To: fatyalink
Answer to:
>
цитата……Представьте, что кто-то, находясь на…

Вопрос первый. Отчего у Вас такая путаница с системами отсчета?
Вопрос второй. Известны ли Вам другие описания эффекта Кориолиса, кроме этой статьи? В них также не акцентируется, что эффект возникает при _движении_ во вращающейся системе отсчета, а на покоящиеся в ней эта фиктивная сила не действует?

Первое.
Это не у меня путаница, это чехарда от придуманной относительности.
Вместо того чтобы прямо заявить, что неподвижная система отсчета какая-либо звезда, нам просто пудрят мозги, короче, чем больше путаница, тем легче скрыть собственное непонимание. Прием известный, а дяденьки Лорентц, Эйнштейн и прочие применяли его гениально.

Физический эффект присутствует, но он не может быть объяснен с позиции механики. Никакое физическое движение нельзя разрешить или запретить математической абстракцией – выбором места наблюдения.
Он действительно зависит от вращения земли. Но не напрямую. И фиктивными выдуманными воздействиями объяснен быть не может.
Такое объяснение и будет фикцией.

Цитата из «ФИЗИЧЕСКИЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ»
— М.: Советская энциклопедия, 1983 г. стр. 311.

«Кориолисова сила — одна из сил инерции; вводится для учета влияния вращения подвижной системы отсчета на относительной движение материальной точки; названная по имени французского ученого Г. Кориолиса.
К.с. равна произведению массы точки на ее Кориолиса ускорение и направлена противоположно этому ускорению. Эффект, учитываемый К.с. состоит в том, что во вращающей системе отсчета материальная точка движущаяся непараллельно оси этого вращения, отклоняется по направлению, перпендикулярному к ее относительной скорости, или оказывает давление на тело, препятствующее этому отклонению. На Земле этот эффект, обусловленный ее суточным вращением, заключается в том, что свободно падающие тела отклоняются от вертикали к востоку, а тела движущиеся вдоль земной поверхности, отклоняются в Северном полушарии — вправо, а в Южном — влево от направления их движения.
Вследствие медленного вращения Земли эти отклонения весьма малы и заметно сказываются или при больших скоростях движения (например., у ракет, самолетов, и у артиллерийских снарядов с большими дальностями полета), или когда движение длится очень долго, например, подмыв соответствующих берегов рек (правые берега рек в Северном полушарии имеют более крутые берега. т.н. закон Бэра), возникновение некоторых воздушных и морских течений и др…»

Более или менее толково изложена сама суть явления.
С несколькими но, если смотреть на южный полюс отклонения всегда на восток.
И что это за разновидность сил инерции? их что немеряно?
И это не инерция. Она вообще ни причем. Смещение бы было в другую сторону. Хотя и силы инерции тоже фиктивные и классическое их объяснение – фикция, непонимание происходящего. На безрыбье и рак рыба. Посчитали, что и так сойдет. Чтоб не забросить формулировку ньютона в мусор. Насчет прямолинейного и равномерного движения. Начисто забывают, что инерция это свойство тела, на которое явно никакие силы не действуют. А значит это внутренняя его энергия. Аккумулированная и расходуемая при сопротивлении среды. Силы есть, но они внутренние, а не внешние.
Проявление эффекта только при Непараллельности направления движения оси вращения. О какой непараллельности идет речь? Поверхность земли определяет непараллельность. Но это не факт, что при параллельности этого не будет, поскольку для проверки тоннель рыть надо, что накладно. С другой стороны несоосность не должна влиять на качественную сторону, только на количественную.

С этим эффектом пытаются связать значительные отклонения от вертикали при определении ускорения свободного падения методом бросания. Отклонение происходит по ходу вращения земли. Причем для разных материалов разные. Не знаю, учитывается ли это в метрологии (в гравиметрии не учитывается). Растет длина пути.
Как правило его вообще не учитывают. http://arlenasong.ru/_14/index.php?k=5.html

http://www.inauka.ru/blogs/article91056.html
http://www.kscnet.ru/ivs/publication/tutorials/geophys_studi es/chapter2.pdf
сам эффект отклонения обнаружен шахтным методом наблюдений.

Кроме того, для намагниченных тел присутствует отклонение в сторону полюсов в зависимости от полушария, мало того имеется и элемент вращения. Это магнитное наклонение и магнитное склонение.
На самом деле все это якобы силами Кариолиса не вызывается.
Кстати, этого отклонения нет вообще на магнитном экваторе, не географическом. Нет зависимости от вращения.
При свободном падении сильно заметного движения вдоль поверхности земли нет, а эффект проявляется и не зависит от самого вращения земли, то есть от той самой вращающейся системы отсчета.

Якобы Проявление эффекта с подмывом правых берегов в северном полушарии. Множество народа пытается опровергнуть это заблуждение и совершенно правильно. Земля крутится неравномерно, то быстрее то медленнее. скорость вращения на разных широтах разная.Попробуйте походить со стаканом воды в руке, да посмотрите где уровень будет больше. В стороне противоположной направлению движения. И именно за счет подвижности текучести. Показано только для северного полушария, а для южного такого многообразия подходящих примеров нет. Так и суши такой как на севере нет и речек так же текущих.
так что отнесение данного эффекта только на счет Кариолиса
проблематично.http://gatchina3000.ru/brockhaus-and-efron-enc yclopedic-dictionary/017/17191.htm

Напрямую это явление связано с маятником Фуко, плоскость качания которого на экваторе тоже не изменяется. Еще хохма… маятник Фуко запускается ОДИН РАЗ! и колебания не затухают. Есть еще одно! маятник Фуко реагирует на солнечные затмения уж очень непредсказуемо, как магнитная стрелка на полюсе. Работа реального (не математического) маятника Фуко зависит от высоты подвеса.
Чем выше, тем больше скорость. В общем, это второе и главное.

Третье.
Некоторые заморочки со вращением (медного диска) и магнитным полем земли обнаружил Фарадей и прекрасно описал в своих трудах. Читаешь и поражаешься, а куда все смотрят?
Тут мужик со светом (сайт я дал) поработал, так еще выясняются и некоторые совпадения с солнечной активностью.

С уважением, АВФ

Датчики потока жидкости — подбор по характеристикам

Датчики потока жидкости предназначены для индикации потока жидкого вещества, определения скорости и измерения уровня расхода продукта.

Современные реле потока отличаются высокой чувствительностью и способны реагировать даже на слабый поток жидкости в трубопроводе. Разнообразие моделей позволяет применять датчики потока для работы с различными видами жидких продуктов, в том числе с агрессивными и опасными веществами. Некоторые производители предлагают взрывозащищенные варианты, безопасные для применения в опасных производствах.

Выбрать и купить реле потока вы можете в интернет-магазине …

Область применения датчиков потока жидкости

Реле потока жидкости применяются для решения различных задач во многих отраслях промышленности:

  • в системах водоснабжения и водоотведения для контроля подачи воды, поддержания работы насосного оборудования, организации систем отведения сточных вод, канализационных сооружений, защиты насосного оборудования и двигателей от «сухого хода»,
  • в системах отопления, охлаждения, вентиляции и кондиционирования воздуха для контроля подачи воды, хладагента, специальных жидкостей, отведения отработанных жидкостей из системы,
  • в нефтегазовой сфере для контроля потока газа, нефти, нефтепродуктов при транспортировке и хранении,
  • в металлургии, сталелитейной промышленности в системах подачи и отведения воды и другой жидкости,
  • в химической промышленности для работы с агрессивными и опасными видами жидких продуктов, системах подачи и отведения воды,
  • в сельском хозяйстве при автоматизации процессов кормления, в поилках, в системах полива и орошения, при работе с жидкими удобрениями,
  • в пищевой промышленности для контроля подачи различных видов жидких пищевых продуктов, в том числе минеральной воды, молочной и кисломолочной продукции, алкогольных напитков, пива и т. д.

Некоторые виды датчиков потока жидкости также подойдут для работы с газами, что значительно расширяет возможности применения устройств в промышленности и быту.

Виды реле потока жидких материалов и их назначение

Современные виды реле потока жидкости имеют общее основное назначение – контроль наличия или отсутствия потока рабочей жидкости в трубопроводе. Различия заключаются в принципах работы и возможностях применения датчиков.

  1. Механическое лопастное реле потока представляет собой встраиваемое в трубу устройство, снабженное специальной лопастью. При наличии потока в трубопроводе лопасть отклоняется, приводя к замыканию контактов и срабатыванию датчика. Лопастное реле практически не имеет ограничений в применении, мало подвержено износу и не нуждается в обслуживании.
  2. Тепловое реле потока контролирует наличие потока с помощью измерения уровня рассеивания тепловой энергии от встроенного нагревательного элемента. В зависимости от скорости изменения температуры нагревательного элемента регистрируется поток, а также его скорость при наличии такой функции.

Выбрать и купить датчики потока вы можете в интернет-магазине РусАвтоматизация …

г. Москва,
ул. Красноярская,
дом 1, корпус 1

г. Москва,
ул. Красноярская,
дом 1, корпус 1

Надежное измерение концентрации кислорода в жидкости

Измеритель мутности – надежный мониторинг с точными показаниями

Кондуктометр – простое решение непростой задачи!

SITRANS – гарантия надежного уровня

08
04. 21

Портативный расходомер от нового поставщика

Движение жидкости в трубе при изменении ее температуры

По мере движения жидкости вдоль трубы наблюдается прогрев или охлаждение пристенных слоев, если температура жидкости отлична от температуры трубы. В начале трубы центральное ядро жидкости еще имеет температуру, равную температуре на входе, это ядро в теплообмене не участвует, все изменение температуры сосредоточивается в пристенном слое. Таким образом, у поверхности трубы в ее начальной части образуется тепловой пограничный слой, толщина которого по мере удаления от входа увеличивается. На некотором расстоянии от входа, равном /н.т, тепловой пограничный слой заполняет [c.203]

Рассмотрим развитие процесса теплообмена вдоль трубы. Пусть во входном сечении температура жидкости постоянна и по величине отличается от температуры стенки трубы. По мере движения потока между жидкостью и стенкой происходит процесс теплообмена и температура жидкости постепенно изменяется. Вначале вблизи от входного сечения изменение температуры происходит лишь в тонком слое около поверхности. Затем по мере удаления от входного сечения вся большая часть потока вовлекается в процесс теплообмена. Таким образом, развитие процесса теплообмена внутри труб вначале происходит качественно так же, как и при ламинарном пограничном слое на пластине (см. 3-1). Около поверхности трубы образуется тепловой пограничный слой, толщина которого постепенно увеличивается в направлении движения потока. На некотором расстоянии от начального сечения трубы /н т тепловые пограничные слои смыкаются, и в процессе теплообмена участвует далее весь поток жидкости. Расстояние /н.т может быть приближенно оценено по зависимости [c.76]

При значительном изменении температуры по сечению и длине трубы в разных точках потока оказываются различными плотности жидкости или газа. Вследствие этого в жидкости возникают подъемные силы, под действием которых на вынужденное движение теплоносителя накладывается свободное движение. В итоге изменяются картина движения жидкости и интенсивность теплоотдачи. Так, в вертикальных трубах при совпадении направления течения жидкости с направлением подъемной силы (течение снизу вверх при нагреве жидкости, течение сверху вниз при охлаждении) скорость течения жидкости у стенки увеличивается, как это показано на рис. 3-20. В итоге интенсивность теплоотдачи увеличивается по сравнению со случаем, когда влияние свободной конвекции отсутствует, что, например, имеет место в условиях невесомости. [c.81]
Гидросистема привода представляется как последовательное-соединения труб, местных сопротивлений и гидроцилиндров [1, 72], поэтому модель содержит уравнения движения механической части (а), (б), (в), (г) уравнения связи между давлениями и расходами в гидросети (д), (е), (ж), (з), (м) уравнения и условия, списывающие перемещения подвижных элементов гидросистемы (р) (с) логическое условие разрыва кинематической цепи в зазоре (и) описание вспомогательных переменных (к), (л), (н), (о), (п). Жидкость считается сосредоточенной в сечениях н и е , высокочастотные процессы не рассматриваются, изменение температуры не-учитывается. Объемный модуль упругости смеси масла с воздухом [c.63]

При движении по трубе двухфазной среды — воды и пара поверхность трубы, воспринимающая тепло, может попеременно омываться то водой, то паром. При соприкосновении металла с водой вследствие большого коэффициента теплоотдачи от жидкости к стенке температура его понижается и, наоборот, при омывании металла насыщенным или перегретым паром температура его повышается, что и приводит к возникновению периодически меняющихся температурных напряжений. Период колебания температуры стенки, т. е. время изменения температуры от максимума до минимума и вновь до максимума, может быть различным — от секунд до десятков минут. [c.14]

Приведенные соображения, по-видимому, довольно правильно отображают качественную сторону механизма теплообмена при ламинарном движении жидкости в трубах. Однако, естественно, возникает вопрос, в какой мере принятое допущение о постоянстве физических параметров жидкости (и в первую очередь допущение о постоянстве ее вязкости) может повлиять на количественные результаты. С физической точки зрения представляется очевидным, что при обычном законе изменения вязкости уменьшение ее с температурой должно способствовать сглаживанию диссипативного эффекта. Некоторые количественные оценки можно получить (по крайней мере в отношении предельного значения Ми(оо)), если воспользоваться приведенным в 15] обобщенным на случай переменной вязкости диссипативным критерием [c.63]

Для приближенного расчета движения жидкости или газа по тру бам можно отвлечься от весьма сложных деталей этого движения (об этом будет сказано в заключительных главах) и удовольствоваться следующей упрощенной схемой. Примем поток за одномерный, т. е. будем пренебрегать изменением величины и направления скорости, а также изменениями других элементов потока (давления, плотности, температуры и др. ) по сечению, перпендикулярному к оси потока будем лишь учитывать изменение средних по сечениям величин и, р, р, 7″ и др. в зависимости от координаты х, определяющей положение сечения вдоль оси трубы. Площадь сечения А будем считать заданной функцией х. Отвлечемся от сил трения внутри жидкости и жидкости о стенку, а также от теплопроводности иными словами, как повсюду в настоящей главе, будем считать жидкость идеальной. [c.198]

С изменением температуры стенки трубы коэффициент теплоотдачи при вынужденном движении однофазной жидкости [c.217]

Как и при омывании пластины, теплоотдача при течении жидкости в трубе неодинакова по длине. По мере движения жидкости вдоль трубы наблюдается пропрев или охлаждение пристенных слоев. При этом в начале трубы центральное ядро жидкости еще имеет д емпера-туру, равную температуре на входе, это ядро в теплообмене не участвует, се изменение температуры сосредоточивается в пристенных слоях. Таким образом, у поверхности трубы в ее начальной части образуется тепловой пограничный слоя, толщина которого по мере [c. 192]

Вертикальная труба. На рис. 13-11 показано изменение структуры и температуры двухфазного потока, а также изменение температуры стенки по длине вертикальной трубы при движении потока снизу вверх. Наблюдаются три основные области с разной структурой потока жидкости область подогрева (экономайзер-ный участок) (до сечения трубы, где Тс = Тл), область кипения (испарительный участок) (от сечения, где Тс-Ти, /,кТ , [c.299]

Различие температур в сечении трубы вызывает дополнительно изменение распределения скоростей движения жидкости за счет возникновения подъемной силы и естественной конвекции. [c.55]

Теплоотдача при турбулентном режиме. При турбулентном режиме движения передача тепла внутри жидкости в основном осуществляется за счет перемешивания, которое происходит настолько интенсивно, что Б подавляющей части поперечного сечения трубы температура жидкости практически постоянна. Резкое изменение температуры имеет место лишь в пограничном слое. При таком распределении температуры естественная конвекция отсутствует и теплоотдача полностью определяется вынужденным движением жидкости. [c.57]

Профиль температуры (см. рис. 12-2) изменяется при переходе от сечения 1 к сечению 2. Изменение это связано с теплоотдачей, которая происходит на участке трубы между этими сечениями. По трубе движется жидкость, температура которой выше, чем температура стенки. На рис. 12-2 изображен профиль избыточной температуры б (г, x)=t r, х)—t . На стенке температура жидкости принимает температуру стенки, поэтому избыточная температура 0(го, х) равна нулю. Наиболее высокая температура жидкости —на оси трубы. Если представить, что движение жидкости осуществляется в виде скольжения друг по другу коаксиальных цилиндров, то теплота от внутренних, более нагретых слоев к наружным переносится теплопроводностью (микрочастицами, переходящими из слоя в слой). Здесь уместно отметить, что тот же обмен микрочастицами 220 [c. 220]

При больших значениях температурного напора и существенном изменении температуры по длине трубы плотность жидкости может меняться и может возникать свободное движение жидкости, приводящее к изменению коэффициента теплоотдачи. Такое изменение не учитывается формулой (12-53). Этот вопрос будет рассмотрен в параграфе, посвященном свободной конвекции. [c.278]

Уравнение (5-47) имеет тот же вид, что и уравнение теплопроводности для нестационарного поля температуры в твердом теле с внутренними источниками тепла, мощность которых изменяется во времени. Если геометрическая форма потока в трубе и геометрическая форма тела одинаковы, законы изменения во времени градиента давления и мощности внутренних источников тепла совпадают, начальные и граничные условия в обеих задачах идентичны, то решение задачи теплопроводности можно одновременно рассматривать и как решение соответствующей задачи о движении жидкости в трубе. Поскольку в теории теплопроводности известны решения ряда подходящих задач (Л. 41], то эти решения непосредственно или после некоторой переработки (например, в случае несоответствия начальных условий) можно использовать и для расчета нестационарных течений в трубах. [c.71]

Итак, рассматривается течение жидкости и теплообмен в вертикальной трубе при постоянной плотности теплового потока на стенке и однородном тепловыделении в потоке за счет действия внутренних источников. Физические свойства жидкости, исключая плотность, считаются постоянными. Изменение плотности в зависимости от температуры предполагается линейным и учитывается лишь в том члене уравнения движения, который выражает подъемную силу. Таким образом, движение жидкости в данном случае представляет собой результат взаимодействия вынужденной и свободной конвекции. При этом профили скорости и температуры будут осесимметричными. [c.333]

До сих пор мы рассматривали нестационарные процессы конвективного теплообмена при чисто вынужденном движении жидкости. Однако не лишены интереса некоторые результаты, относящиеся к случаю совместного действия вынужденной и свободной конвекции. В [Л. 17] изучалось нестационарное течение и теплообмен в плоской, а в [Л. 18] — в круглой вертикальных трубах при нагревании жидкости, текущей снизу вверх, или охлаждение жидкости, текущей сверху вниз. Анализ был проведен для полностью развитого (стабилизированного) течения и теплообмена при линейном изменении температуры стенки по длине и равномерном тепловыделении в потоке. Первоначальное стационарное состояние нарушается вследствие произвольного изменения во времени температуры стенки, градиента давления и мощности внутренних, источников тепла. [c.391]

Развитое турбулентное движение устанавливается лишь при Re Ю . При этом процесс перемешивания частиц жидкости протекает настолько интенсивно, что по сечению турбулентного ядра потока температура практически остается постоянной. Резкое изменение температуры наблюдается лишь внутри пограничного слоя (см. рис. 14.2). Естественно, что при подобном распределении температуры развитие свободной конвекции становится невозможным и процесс теплоотдачи полностью определяется только факторами вынужденного движения. В результате анализа и обобщения опытных исследований, проведенных с различными жидкостями (кроме жидких металлов) в широком диапазоне изменения их параметров для прямых гладких труб, рекомендуется следующая формула [2, 10] [c.247]

Приближенный анализ течения газа или жидкости в трубах и каналах может быть выполнен методами гидравлики. При этом поток характеризуется средними по живому сечению канала скоростью, температурой, давлением и плотностью, изменяющимися в направлении движения. При изучении течения в каналах и трубах методами гидравлики исследуются изменения средних характеристик вдоль потока, что позволяет рассматривать реальное сложное течение как одномерное. В дальнейшем, рассматривая течение газа через вентилируемые аппараты, будем считать их установившимися и применим для их изучения методы гидравлики. [c.63]

В книге излагаются основы теории и методы расчета тепломассообмена и трения в каналах переменного сечения, трубах и на поверхностях тел, обтекаемых несжимаемой жидкостью и газом с большими скоростями и высокими температурами, при изменении давления в направлении движения. Рассмотрено обтекание жидкостью и газом непроницаемых и пористых поверхностей при наличии поперечного потока вещества через последние в условиях образования ламинарного и турбулентного пограничных слоев. [c.135]

Все сказанное выше о режимах движения строго справедливо только для такого перемещения, которое совершается при одинаковой и неизменной температуре среды, т. е. для так называемого изотермического движения. Если же движение протекает с изменением температуры среды, т. е. если оно является неизотермическим, то длина участка стабилизации и характр изменения скоростей оказываются другими, отличными от изображенных на фиг. 14. 4 и 14.6. Неизотермическое движение появляется с возникновением теплообмена, причем характер движения определяется направлением и интенсивностью теплового потока. Так, например, если от ламинарного потока капельной жидкости отводится теплота, то параболический закон распределения скоростей в трубе, представленный кривой [c.290]

При постепенном закрывании крана явление повторяется в обратном порядке. Однако переход от турбулентного режима к ламинарному происходит при скорости, меньшей той, при которой наблюдается переход от ламинарного движения к турбулентному. Скорость потока, при которой происходит смена режима движения жидкости, называется критической. Рейнольдсом было обнаружено существование двух критических скоростей одной — при переходе ламинарного режима движения в турбулентный релверхней критической скоростью 1>в.кр, другой — при переходе турбулентного режима движения в ламинарный режим, она называется нижней критической скоростью Он.кр. Опытным пз тем доказано, что значение верхней критической скорости зависит от внещних условий опыта постоянства температуры, уровня вибрации установки и т. д. Нижняя критическая скорость в широком диапазоне изменения внешних условий остается практически неизменной. В опытах было показано, что нижняя критическая скорость для потока в цилиндрической трубе круглого сечения пропорциональна кинематической вязкости V и обратно пропорциональна диаметру трубы с [c.112]

Во многих современных технических устройствах имеет место обтекание жидкостью или газом тел с криволинейной поверхностью, движение жидкостей или газов в каналах переменного сечения и в трубах. Очень часто температура потока отличается от температуры обтекаемой поверхности, и поэтол1у такие течения сопровождаются теплообменом между -потоком и поверхностью твердого тела. Для того чтобы правильно запроектировать такие устройства и обеспечить их надежную работу, необходимо определить трение и тепловой поток на стенке. В случае повышения давления в направлении течения особый интерес представляет выяснение вопроса, происходит или не происходит отрт>1в потока от поверхности тела, и если происходит, то в каком имеиио месте. Прогресс современной техники выдвинул много новых вопросов, в частности определение характеристик потоков при больп1их скоростях, когда диссипация энергии вызывает сильные температурные изменения выяснение влияния отсасывания или вдува л[c.3]

До сих пор предполагалось, что движение жидкости носит изотермический характер (рис. 1-19, кривая 1), т. е. что температура жидкости во всех точках потока одинакова. В условиях теплообмена движение жидкости является неизотермическим, так как температура жидкости изменяется по сечению и по длине трубы. С изменением температуры изменяется вязкость ж1идкости, что оказывает влияние на картину распределения скоростей в сечении трубы, причем это влияние различно в зависимости от направления теплового потока (рис. 1-19). При охлаждении жидкости ее температура у стенки ниже, а вязкость выше, чем в середине сечения трубы, поэтому скорость течения жидкости у стенки меньше, а в середине сечения — больше в сравнении с изотермическим режимом (кривая 2). При нагревании жидкости имеет место обратная картина скорость течения жидкости у стенки выше, а в среднем сечении ниже в сравнении с изотермическим режимом (кривая 3). Таким образом, при наличии теплообмена параболическое распределение скоростей в условиях ламинарного течения жидкости нарушается. [c.55]

Экспериментальное исследование выполнено при нестационарном охлаждении вертикальных трубопроводов различного диаметра жидким азотом при подъемном и опускном движении в условиях как естественного распада жидкой струи на капли, так и предварительного распыла жидкости. Экспериментальная установка, режимные параметры, методика эксперимента и первичной обработки опытных данных такие же, как и при исследовании стержневого режима пленочного кипения, рассмотренном в 7.4. Исключение составляет массовый расход жидкости и температура стенки, которые при дисперсном режиме изменялись в диапазоне 0,01 —1,0 дм с и 300—1000 К соответственно. Предварительный распыл жидкого азота на входе в экспериментальные участки (трубы из стали 1Х18Н9Т с внутренним диаметром 12 мм и 57 мм, длиной 80 и 26 калибров соответственно) осуществлялся с помощью струйных форсунок с радиальной подачей жидкости. В трубе диаметром 57 мм средний начальный размер жидких капель определяли по кривым спектрального распределения капель по размерам. Кривые получены после обработки результатов фотосъемки. При подъемном движении в трубе диаметром 12 мм начальный средний размер капель принимали в предположении, что для заданного значения начального паросодержания. Го = 0,01 достигаются условия е = е,ф, в случае опускного движения без распыла — из вариантных расчетов при изменении бо в пределах от 1 до 3 мм. [c.233]

В случае движения в длинных трубах необходимо учитывать изменение температуры жидкости по длине, так как при этом будет изменяться по длине температурный напор, а следовательно, и вклад в теплообмен, обусловленный свободной конвекцией. Чтобы учесть эти обстоятельства, Мартинелли и Болтер применяют анализ, подобный рассмотренному, к элементарным участкам трубы, а затем производят [c.321]

При неодинаковой температуре в сечении возникает естественная конвекция и создается подъемная сила. Это влияет па п[)офиль скорости, причем характер изменения профиля скорости зависит от того как расположена труба, вертикально или горизонтально, и совпадают ли направления свободного и вынужденного движений или они противоположны. Для вертикальной трубы в случае совпадения направлений свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее сверху или нагреве жидкости и подаче ее снизу) у стенки трубы скорость возрастает, а в центре уменьшается (рис. 1.7, а). В случае противоположно направленных свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее снизу или нагревании жидкости и подаче ее сверху) скорость у стенки трубы становится меньше, а в центре больше (рис. 1.7, 6). [c.21]

Приведенные выше закономерности справедливы лишь для изотермического движения, когда температура жидкости, а следовательно, ее вязкость и плотность во всех точках потока сохран (ют одну и ту же величину. При наличии же теплообмена температура жидкости меняется как по сечению трубы, так и по ее длине, Изменение темпе натуры по сечению приводит к изменению плотности жидкости и ее вязкости и, как следствие этого, к изменению профиля скоростей и гидравлических согротивлений. [c.196]

Прямые скачки уплотнения в газах. Выше было показано, что непрерывное двилсжимаемой жидкости, в котором удовлетворяются условия неразрывности и адиабатичности и уравнение количества движения для невязкой жидкости, является изэнтропическим. Замечено, однако, что при движении реальных жидкостей в трубах могут происходить резкие изменения давления, плотности, температуры и скорости, конечные по величине. Такие разрывы параметров течения, называемые ударными волнами, не могут быть объяснены IB рамках теории изэнтропичеокого движения. Рассмотрим одномерный контрольный объем, включающий в себя стационарный разрыв (скачок уплотнения), нормальный к направлению движения потока (рис. 14-23). Характеристики течения до скачка уплотнения обозначим индексом 1, а течения за скачком уплот- [c. 363]

Единые технические условия

Единые технические условия

1. Водомерный узел должен быть установлен в удобном для снятия показаний и обслуживания месте, после контрольного крана у потребителя. Все подключения водоразборной арматуры допускаются только после водомерного узла.

2. Место установки счетчика должно гарантировать его эксплуатацию без возможных механических повреждений. Установка счетчика в затапливаемых, холодных помещениях (с температурой ниже +5˚C), в помещениях с повышенной влажностью, в помещениях с температурой выше +50˚C не допускается.

3. Счетчик должен быть смонтирован так, чтобы к нему был легкий доступ для считывания показаний (без использования зеркала или лестницы), монтажа, обслуживания.

4. Счетчик монтируется в соответствии с требованиями по монтажу, согласно паспорту прибора. Не разрешается устанавливать счетчик на горизонтальном участке, циферблатом вниз.

5. Установка выполняется таким образом, чтобы счетчик всегда был заполнен водой.

6. При установке счетчика после отводов, запорной арматуры, фильтров и других устройств непосредственно перед счетчиком должен быть прямой участок трубопровода длиной не менее 5Dу, а за счетчиком не менее 1Dу, где Dу-диаметр условного прохода счетчика. Если в паспорте прибора допускается использование в качестве прямого участка заводских присоединений (штуцеров), прямой участок может быть уменьшен.

7. Счетчик должен быть расположен так, чтобы направление, указанное стрелкой на корпусе счетчика совпало с направлением потока воды в трубопроводе.

8. Перед установкой счетчика трубопровод обязательно прочистить и промыть, чтобы удалить из него отложения и посторонние тела.

9. Не допускается установка счетчика на близком расстоянии от устройств, создающих вокруг себя мощное магнитное поле (например, силовых трансформаторов).

10. Счетчик не должен подвергаться перегрузке механическими напряжениями под воздействием трубопроводов и арматуры. При необходимости счетчик может быть смонтирован на подставке или кронштейне.

11. В случае, когда трубопровод используется в качестве заземления, на счетчике и его арматуре необходимо устанавливать постоянный шунт.

14.При наличии в помещении у потребителя двух или более стояков (вводов) холодной воды, приборы учета, устанавливаются на каждом отдельном вводе.

15.Паспорт водомера абонент обязан предоставлять представителю ЗАО “Водоканал” при сдаче водомерного узла по акту приемки.

физика — В каком направлении течет вода?

физика — В каком направлении течет вода? — Загадочный обмен стеками

Сеть обмена стеков

Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Puzzling Stack Exchange — это сайт вопросов и ответов для тех, кто создает, решает и изучает головоломки.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил 3 года назад

Просмотрено 3к раз

В твоей темной винной камере есть твердая металлическая трубка. Вы слышите, как вода медленно течет в трубе, но вы не можете понять, в каком направлении течет вода, поскольку это замкнутая система.

Как проще всего узнать, в каком направлении течет вода?

39.9k66 золотых знаков8686 серебряных знаков225225 бронзовых знаков

28.5k66 золотых знаков5454 серебряных знака202202 бронзовых знака

$ \ endgroup $ 2 $ \ begingroup $

Вы можете попробовать

нагревает середину трубы, скажем, свечой, а затем касается ее обеих сторон. Сторона, которая более теплая, должна соответствовать направлению потока воды, поскольку металлическая труба будет проводить тепло к медленно движущейся воде.

61.6k44 золотых знака207207 серебряных знаков317317 бронзовых знаков

$ \ endgroup $ 2 $ \ begingroup $

ближе к тому концу трубы, где вы слышите больше звука, чем другой конец.

Вода не является застойной , она должна входить в точку трубы с полной силой (таким образом, она касается всего поперечного сечения / внутренней поверхности трубы . .. что приводит к меньшему шуму) .. и уходить в точке с меньшая сила / давление.

Mea Culpa NayMea Culpa Nay

8,55011 золотых знаков99 серебряных знаков4545 бронзовых знаков

$ \ endgroup $ 1 $ \ begingroup $

Я не уверен, насколько это просто,

, но одним из способов было бы разместить по два микрофона на каждом конце трубы, резко ударить по ее середине и записать сигнал микрофонов.. звук, который проходит через воду, дойдет до микрофона немного раньше в направлении потока, но я думаю, что это, вероятно, слишком сложно, чтобы быть правильным решением

3,94411 золотых знаков1010 серебряных знаков3333 бронзовых знака

$ \ endgroup $ 2 $ \ begingroup $

Используйте акустический доплеровский профилограф тока (ADCP), хотя он может плохо работать через металлическую трубу.

Поскольку вода течет, должен быть какой-то насос. Найдите насос и проверьте метки на трубах. Это больше похоже на ремонт дома, чем на «логический вывод». . может я упускаю что-то умное в вопросе.

12933 бронзовых знака

Я бы не стал использовать ответ Тома, потому что

труба у стены и я не хочу сжечь это место.

Я бы вместо этого попробовал

намочите руки и капните немного воды прямо на внешнюю часть трубы,
и затем посмотрите, в каком направлении течет капля.
Если бы капля оставалась на месте, я бы капал прямо в нее, чтобы увеличить каплю.
Или я бы попробовал отвес и уровень, если бы они были под рукой.

74711 золотой знак99 серебряных знаков1616 бронзовых знаков

Не тот ответ, который вы ищете? Посмотрите другие вопросы с метками физика или задайте свой вопрос.

Puzzling Stack Exchange лучше всего работает с включенным JavaScript

Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в ​​отношении файлов cookie.

Принимать все файлы cookie Настроить параметры

Водопроводные трубы связаны с физикой — вот как они работают

Вокруг вас находятся трубы, по которым вода и другие жидкости несут туда, куда им нужно.Водопроводные и канализационные трубы — невидимые герои, позволяющие без труда функционировать современной инфраструктуре.

Однако вы можете быть удивлены, что физика труб не так проста, как вы могли подумать. Фактически, люди ходят в школу, чтобы получить целые инженерные степени, связанные с тем, как вода течет по трубам (инженеры-строители). На самом деле внутри труб происходит довольно интересная физика, поэтому давайте взглянем и узнаем немного больше о том, как жидкость течет по этим жидкостным магистралям.

Гидродинамика и допущения

Обсуждение физики труб на самом деле является обсуждением гидродинамики, то есть изучения того, как жидкости ведут себя в движении. Гидродинамика — не самая сложная вещь в мире, поэтому в этой статье мы будем придерживаться основ.

Любая данная жидкость может течь либо в установившемся режиме, либо жидкость может быть турбулентной. Устойчивый поток подразумевает, что жидкость поддерживает постоянную скорость в любой заданной точке, тогда как турбулентный поток подразумевает, что жидкость меняет скорость и направление по всей трубе или потоку.Устойчивый поток легко изобразить, это просто прямые линии для движения, скорости и т. Д.

Чтобы выразить турбулентный поток, лучше всего дать малышу маркер и посоветовать ему рисовать. Вот как это делают специалисты.

СВЯЗАННЫЙ С: КАК ИНЖЕНЕРЫ РАССЧИТАЮТ ЗАГРЯЗНЕНИЕ И ФИЗИКА ДЫМОХОДОВ

Однако в действительности турбулентный поток означает, что свойства потока постоянно меняются, что затрудняет моделирование.

Жидкости могут быть сжимаемыми или несжимаемыми.Жидкости обычно считаются несжимаемыми. Галлон или литр воды невозможно сжать до чего-то меньшего. В то время как галлон или литр воздуха можно было сжать до гораздо меньших объемов.

Поскольку в этой статье мы сосредоточены на водопроводных трубах, мы просто предполагаем, что все жидкости, протекающие по трубам, несжимаемы.

Жидкости также имеют разную степень вязкости. Мы можем думать о вязкости как о толщине. Вязкие жидкости текут медленно, а невязкие текучие среды текут легче.Мед, протекающий по трубе, будет выглядеть и действовать иначе, чем вода, протекающая по трубе.

Поток жидкости также может быть вращательным или безвихревым. Безвихревой поток возникает, когда поток совершает не чистое вращательное движение.

Теперь, когда мы определили используемые термины, мы собираемся сделать некоторые предположения, потому что, как я уже сказал, гидродинамика сложна.

Чтобы упростить это, мы предположим безвихревое несжимаемое устойчивое обтекаемое невязкое течение. Мы делаем все эти предположения, потому что, если мы этого не сделаем, математика будет быстро и быстро.

Математика водопроводных труб

Первое уравнение, которое нам нужно выучить, — это уравнение неразрывности или уравнение неразрывности. Это уравнение утверждает, что для несжимаемой жидкости, протекающей по трубе / трубе переменного сечения, с одним входом и одним выходом, массовый расход одинаков во всей трубе. Массовый расход — это просто скорость, с которой вода определенного веса протекает через трубку.Он равен общей массе жидкости, деленной на временной интервал.

Модель уравнения непрерывности для площади поперечного сечения и потока, Источник: MikeRun / Wikimedia

Проще говоря, масса воды, протекающей по трубе, считается постоянной, независимо от площади поперечного сечения.

Уравнение, которое мы получаем из этого:

Плотность жидкости, rho, обычно постоянна в жидкости в трубе. A — площадь поперечного сечения, которая зависит от размера трубы, а V — скорость. Таким образом, используя это уравнение, вы можете определить, насколько быстро жидкость будет течь через трубу заданного размера, а также насколько большой вам нужно сделать трубу, чтобы заставить жидкость течь с заданной скоростью.

Но давайте вернемся на секунду назад, как вообще заставить жидкость течь по трубе? Что ж, вам понадобится либо сила тяжести, либо насос. Гравитация означает просто наклон трубы вниз, чтобы сила тяжести воздействовала на жидкость, заставляя ее ускоряться и заставляя ее двигаться по трубе. Так в большинстве случаев работают канализационные системы.

Второй способ — создать перепад давления. Обычно это достигается за счет использования насосов. Используя перепады давления, вы можете приложить большее давление к жидкости на одном конце трубы, что заставит ее течь до конца с более низким давлением.

Когда дело доходит до труб, жидкости и давления, помните, жидкость должна иметь одинаковое давление везде, если это возможно. Когда есть дифференциал и путь потока, жидкость перейдет к более низкому давлению (в условиях, которые мы предположили).

Итак, как мы можем смоделировать этот поток через трубу? Мы можем использовать так называемое уравнение Бернулли, которое связывает давление, скорость и высоту жидкости в трубе. Уравнение Бернулли повсюду в механике жидкости, и это, вероятно, самое важное уравнение в этой области физики. Он применяется в самолетах, спорте и, конечно же, в водопроводных трубах.

Так что же такое уравнение Бернулли? В нем говорится, что давление, скорость и высота жидкости в двух точках в невязкой несжимаемой жидкости с установившимся потоком связаны следующим образом:

Неупрощенная версия уравнения Бернулли.2 для этого).

Используя это уравнение, вы можете решить любую из этих переменных. Это невероятно полезно для инженеров при вычислении любого количества вещей.

Но что же интересного в этом уравнении? Что ж, давайте рассмотрим жидкость, текущую по горизонтальной трубе. Если труба уже в одном месте, уравнение неразрывности подразумевает, что скорость жидкости больше в узком сечении. Так давление выше или ниже в узком сечении, где скорость выше?

СВЯЗАННЫЕ: 35 ТЕХНИЧЕСКИХ ИЗОБРЕТЕНИЙ, ИЗМЕНИВШИХ МИР

Вы можете подумать, что если скорость слишком высока, то и давление должно быть сверхвысоким.Если вы просунете руку в конец насадки для шланга, вы почувствуете большую силу!

Однако в этом случае сила, которую вы чувствуете, исходит не от давления, а от вашей руки, отбирающей импульс из жидкости.

Упрощение уравнения Бернулли

Мы можем упростить уравнение Бернулли для плоской трубы, так как высота не меняется, чтобы оно выглядело следующим образом:

Упрощенная версия уравнений Бернулли с учетом вышеупомянутых предположений.

Поскольку меньшая труба справа имеет большую скорость, давление справа должно быть ниже, чтобы уравнение уравновешивалось. Именно эта разница в давлении заставляет жидкость течь быстрее!

Итак, это почти завершает некоторые из самых элементарных физических процессов и уравнений, описывающих, как вода или жидкости протекают по трубам. И эти уравнения можно использовать и в других задачах с жидкостями. Но помните, здесь мы сделали массу предположений. В реальном мире нам приходится делать гораздо больше вычислений и сложной математики, чтобы действительно что-то просчитывать.

Надеюсь, теперь вы немного больше понимаете, как работают эти невидимые компоненты вокруг вас, и получили базовое введение в механику жидкости. Как и во всей инженерии и физике, одна из самых крутых вещей в обучении — это то, что вы понимаете, насколько математика участвует в кажущихся обычными событиях, происходящих вокруг.

Базовое представление уравнения неразрывности.

Как рассчитать поток жидкости через отверстие в трубе

Обновлено 14 декабря 2020 г.

Автор: J.Р. Камбак

Распространенная проблема труб — это коррозия. Со временем из-за коррозии в трубе может образоваться дыра, которая приведет к утечке. Расчет потока жидкости через отверстие может быть трудным из-за многих переменных, таких как скорость потока жидкости, давление в трубе и плотность жидкости, и это лишь некоторые из них, но не расстраивайтесь. Вы можете найти нужный ответ, выполнив ряд простых шагов.

Шаг 1: Сбор измерений трубы

Получите измерения: диаметр (D) отверстия в трубе и высота (h) поверхности жидкости над отверстием.2

Результат будет в квадратных единицах длины.

Шаг 3. Найдите скорость жидкости

Используйте уравнение Бернулли, чтобы найти скорость жидкости (v), если оно еще не задано. Если давление жидкости в трубе постоянное (т. Е. Если поток устойчивый), жидкость выходит через отверстие в трубе со скоростью:

, где g — ускорение из-за гравитация, 9,8 м / с 2 .

Шаг 4: Найдите объемный расход жидкости (поток)

Умножьте площадь поперечного сечения отверстия на скорость жидкости, чтобы найти объемный расход жидкости (Q):

Объем жидкости, покидающей отверстие, в кубических метрах в секунду. 3 \ text

Поскольку 1 кубический метр = 61 024 кубических дюйма, Q = 52,9 дюйма 3 / с. Таким образом, 52,9 кубических дюйма воды покидает отверстие в трубе за секунду.

Что заставляет воду, стекающую в канализацию, вращаться по часовой стрелке в северном полушарии и против часовой стрелки в южном полушарии?

Что заставляет воду, стекающую в канализацию, вращаться по часовой стрелке в северном полушарии и против часовой стрелки в южном полушарии? | Научные вопросы с удивительными ответами

Категория: Науки о Земле Опубликовано: 18 декабря 2012 г.

Ураганы достаточно велики, чтобы на них воздействовала сила Кориолиса.Раковины слива воды нет. Ураганы вращаются против часовой стрелки в северном полушарии. Вода, стекающая вниз, вращается в случайных направлениях. Изображение из общественного достояния, источник: NOAA.

Вода, стекающая в канализацию, не всегда течет в определенном направлении. Вы можете заставить одну и ту же раковину вращать воду по часовой стрелке в одну минуту и ​​против часовой стрелки в следующую. Это недоразумение основано на очень реальном эффекте: силе Кориолиса. Сила Кориолиса принадлежит к тому же семейству, что и центробежная сила.Это сила инерции, вызванная вращением объекта. Это не воображаемое или вымышленное, но очень реальное во вращающейся системе отсчета. Сила Кориолиса имеет тенденцию заставлять предметы на поверхности объекта двигаться по спирали в определенном направлении. Когда Земля вращается, это движение заставляет все на поверхности испытывать силу Кориолиса, включая воду в вашей раковине. Но сила Кориолиса настолько мала, что на самом деле ничего не делает, пока не воздействует на большое количество материала. В вашей мойке просто не хватает воды, чтобы на нее воздействовала сила Кориолиса.С другой стороны, ураганы обычно вращаются против часовой стрелки в северном полушарии и по часовой стрелке в южном полушарии, потому что у них достаточно материала для воздействия силы Кориолиса, как подробно описано в учебнике «Введение в динамическую метеорологию» Джеймса Р. Холтоне. Торнадо слишком малы, чтобы на них воздействовала сила Кориолиса, и они вращаются в любом направлении. Направление вращения дренажной воды является случайным и определяется в основном тем, как вода ударяется, проливается или распределяется, когда она начинает стекать.

Темы: Сила Кориолиса, угловой момент, слив, направление слива, слив воды, ураган, водоворот в канализации

Расход и его отношение к скорости

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте расход.
  • Определите единицы объема.
  • Описывать несжимаемые жидкости.
  • Объясните последствия уравнения неразрывности.

Расход Q определяется как объем жидкости, проходящей через некоторое место через область в течение периода времени, как показано на рисунке 1. В символах это может быть записано как

[латекс] Q = \ frac \\ [/ latex],

, где V — объем, а t — прошедшее время. Единица СИ для расхода — м 3 / с, но обычно используется ряд других единиц для Q .Например, сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5 литров в минуту (л / мин). Обратите внимание, что литровый (L) равен 1/1000 кубического метра или 1000 кубических сантиметров (10 -3 м 3 или 10 3 см 3 ). В этом тексте мы будем использовать любые метрические единицы, наиболее удобные для данной ситуации.

Рис. 1. Скорость потока — это объем жидкости в единицу времени, проходящий мимо точки через область A . Здесь заштрихованный цилиндр жидкости проходит через точку P по однородной трубе за время t .Объем цилиндра составляет Ad , а средняя скорость составляет [латекс] \ overline = d / t \\ [/ latex], так что скорость потока составляет [латекс] Q = \ text / t = A \ overline \\ [/ latex].

Пример 1. Расчет объема по скорости потока: сердце накачивает много крови за всю жизнь

Сколько кубических метров крови перекачивает сердце за 75 лет жизни, если средняя скорость потока составляет 5,00 л / мин?

Стратегия

Время и расход Q даны, поэтому объем V можно рассчитать из определения расхода. \ end \\ [/ latex].

Обсуждение

Это количество около 200 000 тонн крови. Для сравнения, это значение примерно в 200 раз превышает объем воды, содержащейся в 6-полосном 50-метровом бассейне с дорожками.

Расход и скорость связаны, но совершенно разными физическими величинами. Чтобы сделать различие ясным, подумайте о скорости течения реки. Чем больше скорость воды, тем больше скорость течения реки. Но скорость потока также зависит от размера реки.Быстрый горный ручей несет гораздо меньше воды, чем, например, река Амазонка в Бразилии. Точное соотношение между расходом Q и скоростью [латекс] \ bar \\ [/ latex] составляет

[латекс] Q = A \ overline \\ [/ latex],

, где A — площадь поперечного сечения, а [latex] \ bar \\ [/ latex] — средняя скорость. Это уравнение кажется достаточно логичным. Это соотношение говорит нам, что скорость потока прямо пропорциональна величине средней скорости (далее называемой скоростью) и размеру реки, трубы или другого водовода. Чем больше размер трубы, тем больше площадь его поперечного сечения. На рисунке 1 показано, как получается это соотношение. Заштрихованный цилиндр имеет объем

, который проходит через точку P за время t . Разделив обе стороны этого отношения на т , получим

[латекс] \ frac = \ frac \\ [/ latex].

Отметим, что Q = V / t и средняя скорость [латекс] \ overline = d / t \\ [/ latex].Таким образом, уравнение принимает вид [латекс] Q = A \ overline \\ [/ latex]. На рис. 2 показана несжимаемая жидкость, текущая по трубе с уменьшающимся радиусом. Поскольку жидкость несжимаема, одно и то же количество жидкости должно пройти через любую точку трубы за заданное время, чтобы обеспечить непрерывность потока. В этом случае, поскольку площадь поперечного сечения трубы уменьшается, скорость обязательно должна увеличиваться. Эту логику можно расширить, чтобы сказать, что скорость потока должна быть одинаковой во всех точках трубы. В частности, для точек 1 и 2,

[латекс] \ begin Q_ & = & Q_ \\ A_ v_ & = & A_ v_ \ end \\ [/ latex ]

Это называется уравнением неразрывности и справедливо для любой несжимаемой жидкости.Следствия уравнения неразрывности можно наблюдать, когда вода течет из шланга в узкую форсунку: она выходит с большой скоростью — это и есть назначение форсунки. И наоборот, когда река впадает в один конец водохранилища, вода значительно замедляется, возможно, снова набирая скорость, когда она покидает другой конец водохранилища. Другими словами, скорость увеличивается, когда площадь поперечного сечения уменьшается, и скорость уменьшается, когда увеличивается площадь поперечного сечения.

Рисунок 2.Когда трубка сужается, тот же объем занимает большую длину. Для того, чтобы тот же объем проходил через точки 1 и 2 за заданное время, скорость должна быть больше в точке 2. Процесс в точности обратим. Если жидкость течет в обратном направлении, ее скорость будет уменьшаться при расширении трубки. (Обратите внимание, что относительные объемы двух цилиндров и соответствующие стрелки вектора скорости не масштабированы.)

Поскольку жидкости по существу несжимаемы, уравнение неразрывности справедливо для всех жидкостей.Однако газы сжимаемы, поэтому уравнение следует применять с осторожностью к газам, если они подвергаются сжатию или расширению.

Пример 2. Расчет скорости жидкости: скорость увеличивается, когда труба сужается

Насадка радиусом 0,250 см крепится к садовому шлангу радиусом 0,900 см. Расход через шланг и насадку составляет 0,500 л / с. Рассчитайте скорость воды (а) в шланге и (б) в форсунке.

Стратегия

Мы можем использовать соотношение между расходом и скоростью, чтобы найти обе скорости.> = 1,96 \ text \\ [/ latex].

Решение для (b)

Мы могли бы повторить этот расчет, чтобы найти скорость в сопле [латекс] \ bar _ \\ [/ latex], но мы воспользуемся уравнением непрерывности, чтобы получить несколько иное представление. > \ bar _ \\ [/ latex].> 1,96 \ text = 25,5 \ text \\ [/ latex].

Обсуждение

Скорость 1,96 м / с примерно подходит для воды, выходящей из шланга без сопел. Сопло создает значительно более быстрый поток, просто сужая поток до более узкой трубки.

Решение последней части примера показывает, что скорость обратно пропорциональна квадрату радиуса трубы, что дает большие эффекты при изменении радиуса. Мы можем задуть свечу на большом расстоянии, например, поджав губы, тогда как задувание свечи с широко открытым ртом совершенно неэффективно.Во многих ситуациях, в том числе в сердечно-сосудистой системе, происходит разветвление потока. Кровь перекачивается из сердца в артерии, которые подразделяются на более мелкие артерии (артериолы), которые разветвляются на очень тонкие сосуды, называемые капиллярами. В этой ситуации непрерывность потока сохраняется, но сохраняется сумма скоростей потока в каждом из ответвлений на любом участке вдоль трубы. Уравнение неразрывности в более общем виде принимает вид

, где n 1 и n 2 — количество ответвлений в каждой из секций вдоль трубы.

Пример 3. Расчет скорости потока и диаметра сосуда: разветвление сердечно-сосудистой системы

Аорта — это главный кровеносный сосуд, по которому кровь покидает сердце и циркулирует по телу. (а) Рассчитайте среднюю скорость кровотока в аорте, если скорость потока составляет 5,0 л / мин. Аорта имеет радиус 10 мм. (б) Кровь также течет через более мелкие кровеносные сосуды, известные как капилляры. Когда скорость кровотока в аорте составляет 5,0 л / мин, скорость кровотока в капиллярах составляет около 0.33 мм / с. Учитывая, что средний диаметр капилляра составляет 8,0 мкм м, рассчитайте количество капилляров в системе кровообращения.

Стратегия

Мы можем использовать [latex] Q = A \ overline \\ [/ latex] для расчета скорости потока в аорте, а затем использовать общую форму уравнения непрерывности для расчета количества капилляров как всех другие переменные известны. \ left (0. \ text \\ [/ latex].

Обсуждение

Обратите внимание, что скорость потока в капиллярах значительно снижена по сравнению со скоростью в аорте из-за значительного увеличения общей площади поперечного сечения капилляров. Эта низкая скорость предназначена для того, чтобы дать достаточно времени для эффективного обмена, хотя не менее важно, чтобы поток не становился стационарным, чтобы избежать возможности свертывания. Кажется ли разумным такое большое количество капилляров в организме? В активной мышце можно найти около 200 капилляров на мм 3 , или около 200 × 10 6 на 1 кг мышцы.На 20 кг мышц это составляет примерно 4 × 10 9 капилляров.

Сводка раздела

  • Расход Q определяется как объем V , протекающий через момент времени t , или [латекс] Q = \ frac \\ [/ latex], где V объем и т время.
  • Единица объема в системе СИ — м 3 .
  • Другой распространенной единицей измерения является литр (л), который равен 10 -3 м 3 .
  • Расход и скорость связаны соотношением [латекс] Q = A \ overline \\ [/ latex], где A — площадь поперечного сечения потока, а [латекс] \ overline \\ [ / латекс] — его средняя скорость.
  • Для несжимаемых жидкостей скорость потока в различных точках постоянна. То есть

[латекс] \ begin Q_ & = & Q_ \\ A_ v_ & = & A_ v_ \\ n_ A_ \ bar _ & = & n_ A_ \ bar _ \ end \\ [/ latex].

Концептуальные вопросы

1. В чем разница между расходом и скоростью жидкости? Как они связаны?

2. На многих рисунках в тексте показаны линии тока. Объясните, почему скорость жидкости максимальна там, где линии тока находятся ближе всего друг к другу.(Подсказка: рассмотрите связь между скоростью жидкости и площадью поперечного сечения, через которую она протекает.)

3. Определите, какие вещества несжимаемы, а какие нет.

Задачи и упражнения

1. Каков средний расход бензина в см 3 / с на двигатель автомобиля, движущегося со скоростью 100 км / ч, если он составляет в среднем 10,0 км / л?

2. Сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5,00 л / мин. (a) Преобразуйте это в см 3 / с.(b) Какова эта скорость в м 3 / с?

3. Кровь перекачивается из сердца со скоростью 5,0 л / мин в аорту (радиусом 1,0 см). Определите скорость кровотока по аорте.

4. Кровь течет по артерии радиусом 2 мм со скоростью 40 см / с. Определите скорость потока и объем, который проходит через артерию за 30 с.

5. Водопад Хука на реке Вайкато — одна из самых посещаемых природных достопримечательностей Новой Зеландии (см. Рис. 3).В среднем река имеет скорость потока около 300 000 л / с. В ущелье река сужается до 20 м в ширину и в среднем 20 м в глубину. а) Какова средняя скорость реки в ущелье? b) Какова средняя скорость воды в реке ниже водопада, когда она расширяется до 60 м, а глубина увеличивается в среднем до 40 м?

Рис. 3. Водопад Хука в Таупо, Новая Зеландия, демонстрирует скорость потока. (Источник: RaviGogna, Flickr)

6. Основная артерия с площадью поперечного сечения 1.00 см 2 разветвляется на 18 артерий меньшего размера, каждая со средней площадью поперечного сечения 0,400 см 2 . Во сколько раз снижается средняя скорость крови при переходе в эти ветви?

7. (a) Когда кровь проходит через капиллярное русло в органе, капилляры соединяются, образуя венулы (маленькие вены). Если скорость кровотока увеличивается в 4 раза, а общая площадь поперечного сечения венул составляет 10,0 см 2 , какова общая площадь поперечного сечения капилляров, питающих эти венулы? (б) Сколько вовлечено капилляров, если их средний диаметр равен 10.0 мкм м?

8. Система кровообращения человека имеет примерно 1 × 10 9 капиллярных сосудов. Каждый сосуд имеет диаметр около 8 мкм м. Предполагая, что сердечный выброс составляет 5 л / мин, определите среднюю скорость кровотока через каждый капиллярный сосуд.

9. (a) Оцените время, которое потребуется для наполнения частного бассейна емкостью 80 000 л с использованием садового шланга со скоростью 60 л / мин. (b) Сколько времени потребуется для заполнения, если вы могли бы направить в нее реку среднего размера, текущую на высоте 5000 м 3 / с?

10.Скорость потока крови через капилляр с радиусом 2,00 × 10 -6 составляет 3,80 × 10 9 . а) Какова скорость кровотока? (Эта малая скорость дает время для диффузии материалов в кровь и из нее.) (B) Если предположить, что вся кровь в организме проходит через капилляры, сколько их должно быть, чтобы нести общий поток 90,0 см 3 / с? (Полученное большое количество является завышенной оценкой, но все же разумно.)

11. (a) Какова скорость жидкости в пожарном шланге с 9.Диаметр 00 см, пропускающий 80,0 л воды в секунду? б) Какая скорость потока в кубических метрах в секунду? (c) Вы бы ответили иначе, если бы соленая вода заменила пресную воду в пожарном шланге?

12. Диаметр главного всасывающего воздуховода воздухонагревателя составляет 0,300 м. Какова средняя скорость воздуха в воздуховоде, если его объем равен объему внутри дома каждые 15 минут? Внутренний объем дома эквивалентен прямоугольному массиву шириной 13,0 м на 20.0 м в длину на 2,75 м в высоту.

13. Вода движется со скоростью 2,00 м / с по шлангу с внутренним диаметром 1,60 см. а) Какая скорость потока в литрах в секунду? (b) Скорость жидкости в сопле этого шланга составляет 15,0 м / с. Каков внутренний диаметр сопла?

14. Докажите, что скорость несжимаемой жидкости через сужение, например, в трубке Вентури, увеличивается на коэффициент, равный квадрату коэффициента уменьшения диаметра. (Обратное применимо к потоку из сужения в область большего диаметра.)

15. Вода выходит прямо из крана диаметром 1,80 см со скоростью 0,500 м / с. (Из-за конструкции крана скорость потока не меняется.) (A) Какова скорость потока в см 3 / с? (б) Каков диаметр ручья на 0,200 м ниже крана? Пренебрегайте эффектами, связанными с поверхностным натяжением.

16. Необоснованные результаты Ширина горного ручья составляет 10,0 м, а глубина в среднем составляет 2,00 м. Во время весеннего стока расход в ручье достигает 100 000 м 3 / с.а) Какова средняя скорость потока в этих условиях? б) Что неразумного в этой скорости? (c) Что неразумно или непоследовательно в помещениях?

Глоссарий

расход: сокращенно Q , это объем V , который проходит мимо определенной точки в течение времени t или Q = V / t литр: единица объема, равная 10 −3 м 3

Избранные решения проблем и упражнения

5. (а) 0,75 м / с (б) 0,13 м / с

7. (а) 40.0 см 2 (б) 5.09 × 10 7

9. (а) 22 ч (б) 0,016 с

11. (а) 12,6 м / с (б) 0,0800 м 3 / с (в) Нет, не зависит от плотности.

13. (а) 0,402 л / с (б) 0,584 см

15. (а) 128 см 3 / с (б) 0,890 см

Консультации — Инженер по подбору | Восемь шагов для определения требований к сантехнической системе

Цели обучения
  • Объясните методы определения размеров систем водоснабжения и распределения, используемые в правилах водоснабжения.
  • Содержит основные расчеты и примеры, которые инженеры могут использовать при определении размеров систем водоснабжения для различных типов коммерческих зданий.

При определении размеров систем водоснабжения для коммерческих зданий используется несколько норм и стандартов. Различные местные органы власти приняли кодексы и стандарты, определяющие методы определения размеров. В настоящее время два основных кодекса, используемых во многих юрисдикциях в Соединенных Штатах, — это Единый сантехнический кодекс (UPC) редакции 2015 года и Международный сантехнический кодекс (IPC).Поскольку существует множество методов определения размеров и различных условий в системе, это не является точным указанием для определения размеров всех систем распределения водяных трубопроводов. Существует множество опубликованных стандартов для водопроводных систем и систем водоснабжения, которые объясняют условия и проблемы, возникающие при определении размеров различных систем водоснабжения.

Первым шагом в определении требований к сантехнической системе и размерам труб является понимание требований к заполняемости здания и сантехнической арматуре.Количество сантехнического оборудования определяется архитектором проекта на основе требований норм, а также требований конкретного проекта, которые могут выходить за рамки норм. Типы помещений в зданиях и связанные с ними требования к количеству сантехнического оборудования продиктованы UPC, IPC и Международным строительным кодексом (IBC). Каждый из этих кодов имеет небольшие отличия в отношении количества сантехнических приборов в зависимости от типа занятости и количества людей, которые будут занимать пространство. Как только количество необходимой сантехники будет определено, архитектор сможет спроектировать различные туалеты и связанные с ними сантехнические устройства для здания.Группы уборных могут быть не единственными приспособлениями / приборами в здании, которым требуется водоснабжение. Водоснабжение может также потребоваться в зонах общественного питания, в системах подпитки оборудования, в моечных системах и других приборах. Определение требуемого расхода для всех приспособлений водоснабжения потребуется для того, чтобы правильно рассчитать размер трубопровода подачи воды.

Начиная с основ определения размеров водопровода, основное уравнение расхода: Q = VA, (Q = расход, V = скорость и A = площадь). Это уравнение можно использовать для определения требуемого размера трубы на основе ограничений расхода и скорости.UPC и IPC диктуют ограничения скорости в системах водоснабжения, и значения в кодах варьируются от 4 до 5 футов в секунду для горячей воды для бытового потребления и максимум 8 футов в секунду для холодной воды для бытового потребления. Значения в UPC лучше определены для конкретного приложения. Важно отметить, что другие факторы могут способствовать ограничению скорости, например, акустические требования для зон, чувствительных к звуку, а также коррозия и эрозия трубопроводов из-за качества воды.

UPC и IPC предоставляют аналогичные методы определения размеров систем распределения воды.Приведенные ниже методы определения размеров соответствуют стандартам UPC и IPC и отмечают основные различия.

Как упоминалось ранее, первым шагом при определении размеров любой системы водоснабжения является работа с архитектором проекта, чтобы понять тип использования здания, тип занятости и количество людей, которые будут занимать здание. После того, как строительная программа разработана и архитектор предоставил необходимое количество сантехнических приборов и приборов, следующим шагом будет разработка схематической схемы расположения трубопроводов в здании для обслуживания каждого приспособления / прибора по мере необходимости.После завершения компоновки трубопровода можно определить размер трубы, используя соответствующий раздел с кодами сантехники.

Версия UPC 2015 года предоставляет несколько методов определения размеров. Первый метод описан в главе 6, раздел 610.0, и использует приложение A. Этот метод используется в этой статье для средних и крупных проектов коммерческого типа. Стоит отметить, что в главе 6 также представлены методы определения размеров трубопроводных систем с клапаном-промывочным клапаном; однако это обычно относится к небольшим проектам.

IPC редакции 2015 года предоставляет критерии определения размеров в соответствии с Приложением A UPC.Эту информацию можно найти в главе 6, разделе 604 и в Приложении E. Методы определения размера UPC и IPC можно разбить на восемь этапов:

Шаг 1: Доступное давление воды

Первым шагом при определении размеров труб водоснабжения является определение имеющегося давления, статического и остаточного давления, если таковое имеется. Во многих случаях это можно определить, позвонив в местное управление водоснабжения и запросив давление в системе водоснабжения для бытового водоснабжения либо на требуемой территории, либо на перекрестке улиц, на котором находится проектная площадка.На основе доступного давления в месте подключения к городу можно выполнить гидравлические расчеты для определения доступного давления в здании. Инженеры-сантехники обычно работают с водопроводными системами внутри здания на расстоянии до 5 футов от внешней стены. Таким образом, рекомендуется обсудить имеющиеся значения давления с инженером-строителем, который может выполнять гидравлический анализ водопровода от городской точки подключения к зданию. Инженер-строитель может обеспечить доступное высокое (статическое) давление и ожидаемое низкое (остаточное / динамическое) давление в здании, которое уже учитывало бы любые потери в трубопроводах на площадке, счетчики и устройства предотвращения обратного потока.Ожидаемое высокое и низкое давление важно понимать, чтобы водопроводные системы работали правильно. Высокое давление в системе может привести к повреждению трубопроводов, оборудования и приспособлений или, что более важно, превысить максимально допустимое давление (80 фунтов на квадратный дюйм), предписанное правилами водопровода. Низкое давление в системе может повлиять на производительность приспособления или поток в системе в периоды пиковой нагрузки. Если эта информация недоступна от инженера-строителя, то инженер-сантехник может уточнить у местных коммунальных служб информацию о давлении на объекте, а затем выполнить расчет гидравлики для оценки потерь давления в трубопроводе на объекте, включая потери, связанные с расходомером и предотвращением обратного потока, при необходимости. .В рамках данной статьи предполагается, что инженер-строитель обеспечит высокое и низкое давление воды в здании, выполнив свои собственные гидравлические расчеты для трубопроводов и компонентов на площадке.

Шаг 2: Определите необходимое давление

Второй шаг — определить давление, необходимое для здания и всех сантехнических устройств. Как указывалось ранее, сантехнические нормы предписывают максимальное давление 80 фунтов на квадратный дюйм на любую сантехническую арматуру. Минимальное давление зависит от приспособления или типа обслуживания.Например, унитазы с промывочным клапаном могут потребовать всего 25 фунтов на квадратный дюйм для правильной работы, в отличие от унитазов с промывочным баком, которые могут работать при гораздо более низком давлении. Для систем механической подпитки может потребоваться от 30 до 40 фунтов на квадратный дюйм для надлежащей подпитки. Что касается требований к сантехническому оборудованию, рекомендуется ознакомиться с требованиями производителя к минимальному рабочему давлению. Если определенное давление не требуется, рекомендуется выбрать минимальное давление 30 фунтов на квадратный дюйм для каждого приспособления. Для целей этой статьи и примеров расчетов предполагается, что необходимое давление должно быть между 30 и 80 фунтами на квадратный дюйм.Унитазы с промывочным клапаном и душевые клапаны — это самые строгие приспособления, требующие минимум 30 фунтов на квадратный дюйм.

Шаг 3: Спрос на водоснабжение

Затем необходимо рассчитать требуемую потребность в водоснабжении для всего здания. В UPC за 2015 г., таблица 610.3, и в IPC за 2015 г., таблица E103.3 (2), приводятся значения единиц водоснабжения для различных типов сантехники. Чтобы определить общую потребность, сначала составьте таблицу и просуммируйте все устройства водоснабжения для всех устройств в здании.Единицы измерения водоснабжения могут быть преобразованы в расход с помощью кривой Хантера, которая учитывает расход сантехнической арматуры, продолжительность работы и вероятность одновременной работы всех приспособлений. Кривая была разработана Роем Б. Хантером в 1940 году для Министерства торговли США и с тех пор используется при определении размеров труб водоснабжения. Это большая тема для обсуждения в сообществе сантехников, так как Hunter’s Curve очень консервативен и имеет тенденцию к завышению размеров систем водоснабжения, особенно с учетом того, как сантехника развивалась с годами, а арматура с низким расходом обычно используется во многих зданиях. .Кривая Хантера представлена ​​на рисунках 1 и 2 для справки.

Пример использования кривой Хантера выглядит следующим образом:

  1. Архитектор проекта определил необходимое количество сантехники: (20) унитазы с самотечным резервуаром, (30) туалеты и (4) умывальники.
  2. Общее количество светильников для этих светильников из таблицы 610.3 UPC для общественных помещений равно 92; однако, используя таблицу IPC E103.3 (2) для общественной занятости, получаем 172.
  3. По данным Hunter’s Curve, 92 приспособления с системой промывочного бака составляют примерно 41 галлон / минуту на UPC.Используя таблицу E103.3 из IPC, для здания потребуется 58 галлонов в минуту. Таблица E103.3 (3) IPC преобразует значения единиц водоснабжения в значения расхода. Эта таблица похожа на кривую Хантера, описанную выше.

Как показано в приведенном выше примере, значения фиксированных единиц различаются между UPC и IPC. Крайне важно подтвердить правильный код, который будет использоваться на основе местных норм, чтобы правильно рассчитать размеры трубопроводных систем в соответствии с местными правилами.

Шаг 4: Потери давления в системах водоснабжения здания

Четвертый этап — определение потерь давления в системах внутреннего снабжения здания.Как упоминалось выше, предполагается, что инженер-строитель обеспечивает высокое и низкое давление воды на соединении со зданием. Дополнительные потери через систему внутреннего снабжения здания будут включать потери на трение в трубопроводах, потери высоты, потери оборудования и другие различные компоненты с потерями давления.

Потери на трение в трубопроводе можно рассчитать, зная материал трубопровода, размер трубы и скорость потока. Уравнение Дарси-Вайсбаха обеспечивает метод расчета потерь на трение в трубе.Эта формула использовалась для построения диаграмм в Приложении A UPC и Приложении E IPC, которые показывают потери на трение в напоре (фунт / кв. Дюйм) на 100 футов длины трубы. UPC и IPC включают диаграммы для гладкой трубы из медных труб (типы M, L и K), довольно гладкой трубы, довольно шероховатой трубы и шероховатой трубы. Эти графики можно использовать для определения скорости в футах в секунду и потерь на трение на 100 футов длины трубы. Эти графики будут использоваться на следующем этапе для определения размеров трубы на основе расхода и допустимых потерь на трение.

Потеря (или прирост) высоты возникает, когда есть физическое изменение высоты в системе трубопроводов. Каждый фут вертикального подъема эквивалентен перепаду давления на 0,434 фунта на квадратный дюйм или наоборот (каждый фут вертикального перепада высоты эквивалентен увеличению давления на 0,434 фунта на квадратный дюйм). Например, если входящая труба водоснабжения находится на высоте -4 фута ниже готового пола, а сантехническая арматура обслуживается на Уровне 2 с высотой 16 футов над чистым полом Уровня 1, тогда это будет равно до 20 футов x 0.434 = перепад давления 8,68 фунтов на кв. Дюйм. Следовательно, если у вас входное давление 60 фунтов на квадратный дюйм, это приведет к 51,32 фунтов на квадратный дюйм на приспособлении уровня 2 (при условии статического потока без потерь на трение или других потерь в системе).

Потери в оборудовании определяются производителем в зависимости от типа оборудования и связанных с ним перепадов давления. Обычное оборудование, которое может иметь перепады давления, включает оборудование для смягчения воды, устройства для фильтрации воды, проточные водонагреватели и т. Д. Обычно для оборудования системы умягчения воды перепад давления составляет от 15 до 25 фунтов на квадратный дюйм для непрерывного и максимального расхода.Падение давления во всем оборудовании необходимо согласовывать с производителем с учетом требуемых расходов.

Прочие потери компонентов включают в себя различные приборы, приспособления, оборудование и т. Д. Общие элементы включают устройства предотвращения обратного потока, счетчики воды, фильтры для воды в точках использования и т. Д. Устройства предотвращения обратного потока и счетчики воды могут привести к значительному падению давления, которое необходимо учитывать в общих расчетах потери давления в здании. Эти перепады давления обычно указываются в документации производителя в зависимости от требуемой скорости потока.

Шаг 5: Наибольшая длина развернутой трубы

На этом этапе определяется самая длинная развернутая длина трубы до самого дальнего гидравлически удаленного приспособления / устройства. Важно отметить, что самое дальнее приспособление от магистрального водопровода может не быть самым удаленным с гидравлическим приводом приспособлением. Например, приспособление на Уровне 2, которое находится ближе к водопроводу, может быть более удаленным с точки зрения гидравлики, чем приспособление, расположенное дальше на Уровне 1. Рассмотрим санузел на Уровне 2, который находится примерно в 100 футах от водопровода. основной водопровод по сравнению с туалетом, который находится в 200 футах от основного водопровода на Уровне 1.Санитарный узел на уровне 1 будет иметь более длинную трубу; однако в санузле на Уровне 2 будет более высокий перепад давления для достижения этого приспособления из-за потерь на высоте. Другой пример — унитаз с клапаном смыва по сравнению с унитазом с баком со смывом. Опять же, унитаз с промывочным клапаном потребует более высокого давления для работы, чем унитаз с промывочным баком, поэтому он может быть самым дальним гидравлически удаленным приспособлением. Это стоит учитывать при оценке наибольшей развернутой длины и необходимого давления воды в различных приспособлениях.

Наибольшая развернутая длина рассчитывается путем определения общего расстояния трубопровода от основного водопровода до самого дальнего гидравлически удаленного приспособления. Например, самое дальнее гидравлически удаленное приспособление — это туалет на уровне 2, который находится примерно в 500 футах от основного водопровода.

В дополнение к общему расстоянию от трубопровода до самого дальнего гидравлически удаленного приспособления необходимо учитывать трубопроводную арматуру, чтобы определить общую максимальную протяженность трассы.В зависимости от материалов трубопровода и требуемой арматуры на каждой арматуре будут возникать дополнительные потери. Производители обычно предоставляют информацию о потерях давления в фитингах и клапанах, которая выражается в эквивалентной длине трубы. Например, 1 дюйм. медная труба со стандартным коленом на 90 градусов добавит примерно 2,5 фута эквивалентной длины трубы. Следовательно, расчеты могут быть выполнены на основе проекта компоновки трубопроводов и предполагаемых фитингов, типов фитингов и размеров труб, чтобы определить дополнительные потери через фитинги и клапаны.

Расчет потерь на трение в каждом фитинге и клапане может занять много времени, особенно когда необходимо определить размер трубы для анализа потерь через каждый фитинг и клапан. Не говоря уже о том, что окончательная установка трубопроводов от сантехников может отличаться от схематических проектных чертежей, что изменит потери на трение в системе трубопроводов. Хорошее правило — использовать от 15% до 50% от общего расстояния между трубопроводами. Например, стандартный коммерческий проект с минимальными изменениями направления может потребовать только дополнительных 15%, добавленных к общей длине трубопровода, чтобы определить общую максимальную протяженность проекта.Однако в проекте со значительным количеством фитингов и изменениями направления может потребоваться прибавка до 50% к общему расстоянию между трубопроводами. Эта сумма обеспечит общую разработанную длительную пробежку.

Шаг 6: Допустимые потери на трение

Следующий шаг включает использование информации из предыдущих шагов для определения допустимых потерь на трение в системе трубопроводов. Допустимые потери на трение будут использоваться с диаграммами из Приложения A UPC и Приложения E IPC для определения размеров труб и требований к скорости потока.

См. Предыдущий пример коммерческого здания с (20) санузлами с самотечным резервуаром, (30) туалетами и (4) раковинами для швабры. Предполагая, что это двухэтажное коммерческое здание с креплениями на обоих уровнях, первым делом необходимо определить доступное давление. В этом примере инженер-строитель предоставил сантехнику 3-дюйм. для бытового водоснабжения при предполагаемом низком давлении 60 фунтов на квадратный дюйм (динамическое) и высоком 70 фунтов на квадратный дюйм (статическое). Высокое статическое давление находится в пределах допустимых ограничений по давлению согласно UPC и IPC (не превышает 80 фунтов на кв. Дюйм).Поскольку нет ни одного перепада высоты (нет подвала или нижнего уровня в здании), не будет повышения давления из-за перепада высоты. В этом примере основное внимание будет уделено низкому давлению 60 фунтов на квадратный дюйм и будет использоваться это значение для определения допустимых потерь на трение. Предполагается, что потеря счетчика составляет 10 фунтов на квадратный дюйм.

Далее будет определение необходимого давления на шаге 2. Хотя все унитазы представляют собой самотечные резервуары, рекомендуется поддерживать минимум 30 фунтов на квадратный дюйм в самом удаленном приспособлении.В этом примере для минимального необходимого давления будет использоваться 30 фунтов на квадратный дюйм.

Теперь, используя шаг 4, можно определить потери на трение для системы электроснабжения здания. В настоящее время потери на трение в трубопроводе не рассчитываются, так как на этом этапе необходимо определить допустимые потери на трение во всей системе. В этом примере будут использоваться потери высоты, как описано в Шаге 4, с вертикальным подъемом на 20 футов, что равняется перепаду давления 8,68 фунт / кв.дюйм.

Шаг 5 затем будет использоваться для определения общей развернутой самой длинной серии.В этом примере 500 футов будут использоваться в качестве общего расстояния трубопровода от основного водопровода до самого дальнего гидравлически удаленного приспособления на уровне 2. Это здание имеет различные изменения направления, но в целом большинство участков прямые. Поэтому инженер-сантехник согласится добавить 25% к общему расстоянию между трубопроводами, чтобы учесть потери в фитингах и клапанах. Таким образом, общая разработанная самая длинная трасса составляет 625 футов

Наконец, расчет допустимых потерь на трение на 100 футов участка трубопровода завершается умножением доступного давления после всех потерь и требуемого давления в самом дальнем гидравлически удаленном приспособлении на 100 футов с последующим делением итогового значения на самый длинный разработанный участок; см. расчет в таблице 1.

В этом примере допустимые потери на трение на 100 футов равны 1,8112 фунтов на квадратный дюйм. Это значение будет использовано на шаге 7 для разработки таблицы размеров труб в соответствии с таблицами UPC и IPC.

Шаг 7. Требования к размеру трубы и расходу

На этом этапе используются диаграммы A 4.1, A 4.1 (1), A 4.1 (2) и A 4.1 (3) из Приложения A UPC и рисунков E103.3 (2), E103.3 (3), E103. 3 (4), E103.3 (5), E103.3 (6) и E103.3 (7) МПК. Эти диаграммы обеспечивают взаимосвязь между размером трубы, скоростью, расходом и потерями на трение на 100 футов для различных материалов трубы (медная труба, довольно гладкая труба, довольно грубая труба и грубая труба).В зависимости от материала трубопровода, который будет использоваться в проекте, может использоваться правильная таблица. Для трубопроводов бытовой воды часто используются довольно грубые трубопроводы. Эта диаграмма будет использоваться для дальнейшей разработки требований к определению размеров труб на основе примера, использованного на этапе 6.

Используя допустимые потери на трение на 100 футов, которые в приведенном выше примере составляют 1,8112 фунтов на квадратный дюйм / 100 футов, диаграмму можно использовать для определения связанных ограничений расхода и скоростей для труб различных размеров. Имейте в виду, что ограничение скорости для холодной воды составляет 8 футов в секунду, а для горячей воды — 5 футов в секунду.

Затем эти значения можно преобразовать в таблицу для справки, связанную с размером трубы, расходом и скоростью, используя кривую Хантера для преобразования расхода в единицы оборудования для водоснабжения, как показано в Таблице 2.

Шаг 8: Определение размера трубы

Последним шагом является окончательный расчет размеров трубы на связанных планах. Это включает суммирование единиц приспособлений водоснабжения для всех приспособлений и суммирование единиц приспособлений водоснабжения по всей системе трубопроводов. Пример плана разметки на Рисунке 3 показывает суммирование устройств водоснабжения, использующих UPC, через системы трубопроводов горячей и холодной воды обратно к основному водопроводу.Тот же метод будет применяться для IPC, с изменениями в значениях единиц водоснабжения по мере необходимости. Для светильников с подачей только холодной воды (т. Е. Писсуаров, унитазов, нагрудников для шлангов и т. Д.) Это будет равно общей стоимости приспособлений для водоснабжения из таблицы 610.3 UPC. Для светильников с горячим и холодным питанием примечания в нижней части UPC, Таблица 610.3, позволяют использовать 75% от общего количества осветительных приборов для расчета расхода. IPC предоставляет значения для арматуры как для холодной, так и для горячей воды.

После того, как количество устройств водоснабжения просчитано по всей системе трубопроводов, можно использовать таблицу, разработанную на шаге 7, для определения надлежащего размера трубы для каждого сегмента трубы.

В редакциях UPC и IPC 2015 г. предусмотрены аналогичные методы определения размеров водопровода для больших коммерческих зданий, хотя есть явные различия между методами, используемыми в каждом кодексе. Также доступны многочисленные опубликованные стандарты для поддержки определения размеров водопроводных систем и условий / проблем, которые могут возникнуть.Использование правильного кодекса, принятого в местной юрисдикции, требуется для завершения правильного определения размеров систем водоснабжения. Понимание основ принципов определения размеров труб жизненно важно для понимания того, как использовать правильный код и правильно проектировать системы распределения воды для коммерческих зданий.

водоразделов и водотоков — Science World

В этой демонстрации студенты узнают, что такое водоразделов и как они влияют на наши местные воды.

Чтобы понять важность воды и сохранения воды, мы должны сначала понять, как вода взаимодействует с окружающим нас миром. Это упражнение демонстрирует, как движется вода и как вода собирается.

Большая часть воды на Земле находится в океане. Вода испаряется из океана, озер и рек и конденсируется в облака. Когда эти облака заполнятся водой, вода в конечном итоге выпадет в виде осадков .Осадки могут быть дождь, снег, град или мокрый снег. Как только дождь попадет на землю, он потечет вниз по пути наименьшего сопротивления. Для некоторой части воды это инфильтрация , что означает, что вода течет через почву в грунтовые воды. Для некоторых вод это в виде поверхностного стока или стока в ручьях и реках. В обоих случаях вода будет продолжать течь и собирать минералы, питательные вещества и загрязнения, пока не достигнет водоема, расположенного на небольшой высоте.Для большей части воды это океан. Затем процесс испарения продолжается.

Направление потока воды можно спрогнозировать на основе высоты земли и типа почвы. Область, где вся вода стекает в одну и ту же реку или водоем, называется водоразделом . Простой способ представить это — использовать аналогию с душем. Когда вода движется из душевых лейок (и «идет дождь»), вода будет попадать на занавески для душа, стены и дно душа.

Как узнать, в какую сторону течет вода по вертикальным трубам отопления?

Собираемся увеличивать количество секций батареи отопления с установкой вентилей, а как узнать направление движения воды в вертикальных стояках — непонятно, однако. Может кто знает, как определить направление течения воды в вертикальных стояках?

комментировать

в избранное

Penzi­ onero­ chka [59K]

10 лет назад

Если в квартире две трубы, то та труба, от которой подходит ответвление к верхней точке батареи — подача, т.е. по ней подается более горячая вода. А та труба, к которой подходит ответвление от нижней точки батареи — обратка, т.е. по ней идет уже остывшая, более прохладная вода. А если труба одна, то она сначала подает тепло в верхнюю точку, а забирает из нижней, т.е. все батареи по стояку расположены последовательно. При однотрубной разводке должна быть перемычка между подачей и обраткой, тогда при установке вентиля вы отключите только вашу батарею и не перекроете движение теплоносителя по трубам на другие этажи, теплоноситель пойдет по этой перемычке.

автор вопроса выбрал этот ответ лучшим

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *